YOLOv8改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛

一、本文介绍

本文记录的是基于 EfficientNet v2 的 YOLOv8 轻量化改进方法研究EfficientNet v2针对EfficientNet v1存在的训练瓶颈,如大图像尺寸训练慢早期深度卷积层速度慢以及等比例缩放各阶段非最优等情况进行改进,以实现训练速度快参数效率高泛化能力好的优势,将其应用到YOLOv8中有望提升模型整体性能,在保证精度的同时降低模型复杂度和训练时间

本文在替换骨干网络中配置了原论文中的efficientnet_v2_sefficientnet_v2_mefficientnet_v2_lefficientnet_v2_xl四种模型,以满足不同的需求。


专栏目录:YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv8改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值