一、本文介绍
本文记录的是基于 EfficientNet v2 的 YOLOv8 轻量化改进方法研究。EfficientNet v2
针对EfficientNet v1
存在的训练瓶颈,如大图像尺寸训练慢、早期深度卷积层速度慢以及等比例缩放各阶段非最优等情况进行改进,以实现训练速度快、参数效率高和泛化能力好的优势,将其应用到YOLOv8
中有望提升模型整体性能,在保证精度的同时降低模型复杂度和训练时间。
本文在替换骨干网络中配置了原论文中的efficientnet_v2_s
、efficientnet_v2_m
、efficientnet_v2_l
和efficientnet_v2_xl
四种模型,以满足不同的需求。
专栏目录:YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进