【YOLOv10多模态融合改进】(可见光+红外)涉及前期、中期、中后期、后期融合方式的完整配置步骤以及二次改进方案

### 多模态融合红外可见光图像的后期融合方法 后期融合,也称为决策级融合,是在特征提取和可能的中间层处理之后进行的操作。此阶段的目标是对已经过预处理和特征提取后的数据做出最终判断或合成新的高质量图像。 对于红外可见光图像的后期融合,通常会涉及到以下几个方面: #### 数据准备与预处理 在进入具体融合之前,需要确保两种模式下的输入图像尺寸一致,并完成必要的校准操作以消除由于传感器差异带来的影响[^1]。 #### 融合策略的选择 常见的后期融合技术包括但不限于加权求和法、最大/最小选择法以及基于规则的方法等。其中一种较为先进的做法是利用机器学习模型来自动学习如何最佳地组合来自不同模态的信息。例如,可以训练神经网络识别哪些类型的结构应该优先保留自于哪个源图像[^4]。 #### 利用MATLAB实现简单后期融合示例 下面给出一段简单的MATLAB代码片段作为演示,这里采用了最基础的最大值选取原则来进行后期融合: ```matlab % 假设I_infrared 和 I_visible 是读入的灰度形式的红外图及可见光图片矩阵 fusedImage = max(I_infrared, I_visible); % 对应位置取较大者形成新图像 imshow(fusedImage); title('Fused Image by Maximum Rule'); ``` 这种方法虽然直观易懂,但在实际应用场景下往往不是最优解;更复杂的方案可能会涉及更多维度上的考量,比如空间频率特性匹配或是基于特定视觉感知质量指标优化等等[^2]。 #### 卷积稀疏表示的应用 另一种值得注意的方式是采用卷积稀疏表示(CSR),该方法能够有效地捕捉到局部区域内的重要特征,并将其应用于跨模态间的一致性表达上。通过构建字典学习框架,可以在保持原始信号稀疏性的前提下实现高效且鲁棒性强的图像重建过程[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值