论文信息
题目:Improved Diversity-Promoting Collaborative Metric Learning for Recommendation
改进的多样性促进协同度量学习推荐系统
作者:Shilong Bao, Qianqian Xu, Zhiyong Yang, Yuan He, Xiaochun Cao, Qingming Huang
论文创新点
- 多向量用户表示: 为每个用户引入多向量表示,捕捉多样兴趣,缓解偏好偏差。
- 多样性控制正则化: 提出DCRS,控制用户嵌入的多样性,防止过拟合。
- 基于OPAUC的负采样: 提出DiHarS,通过最大化OPAUC优化负采样,提升Top-N推荐性能。
摘要
协同度量学习(CML)近年来成为推荐系统