大语言模型(Large Language Model,LLM)和 自回归语言模型(Causal Language Model,CLM)是两个相关但不同的概念,它们都涉及到语言模型,但在规模、架构和应用方面有所不同。
1. LLM(Large Language Model, 大型语言模型)
定义:
LLM 指的是规模较大的语言模型,通常具有数十亿到数千亿的参数。这类模型通过在大规模的文本数据上进行训练,能够掌握丰富的语言模式、知识和上下文理解能力,成为强大的通用语言模型。
特点:
- 规模大:LLM 的参数量通常非常大,典型的 LLM 包括数亿、数十亿甚至上千亿的参数。例如 GPT-3 有 1750 亿参数,GPT-4 的参数数量更大。
- 训练数据广泛:LLM 通常在非常大规模的多样化数据集上进行训练,数据源可能包括书籍、网站、论文、代码等。
- 通用性:LLM 能够处理多种任务,包括自然语言理解(NLU)和自然语言生成(NLG)任务,如文本生成、问答、翻译、摘要生成、情感分析等。
- 预训练和微调:LLM 通常是先进行预训练,学习广泛的语言模式,然后在特定任务上通过微调实现更高的任务性能。微调可以通过技术如 LoRA(Low-Rank Adaptation)、PEFT(Parameter-Efficient Fine-Tuning)等完成。
代表性模型:
- GPT-3、GPT-4:这些模型是大型语言模型的典型例子,能够处理从文本生成到问答的一系列任务。
- BERT:虽然 BERT 是双向的 MLM(Masked Language Model),但由于其参数量巨大,它也是一种 LLM。
- T5、BART:用于生成任务和序列到序列任务的 LLM。
LLM 的应用场景:
- 文本生成:如自动写作、新闻生成、创意写作等。
- 对话系统:如智能助手、聊天机器人。
- 问答系统:自动回答问题。
- 机器翻译:生成高质量的翻译结果。
- 代码生成:如 GitHub Copilot,帮助开发人员生成代码。
总结:
LLM 强调的是语言模型的规模和通用性,通过庞大的参数量和大量训练数据,使其能够很好地适应各种任务。这类模型通常具有高度的语言理解和生成能力,是目前自然语言处理领域的前沿技术。
2. CLM(Causal Language Model,自回归语言模型)
定义:
CLM(Causal Language Model)是一类特定的语言模型,采用 自回归 生成机制,基于序列的过去部分(上下文)来预测未来部分。这类模型的生成过程是逐步完成的,每一步只能依赖于前面的生成内容,而不能使用未来信息。
特点:
-
单向性:CLM 的生成方式是单向的,通常是 从左到右,即每个词只依赖前面生成的词,而不能“看到”后续词。也就是说,模型只能利用历史信息,不能使用将要生成的词来预测当前词。
-
自回归生成:CLM 通过逐词或逐步生成输出。这种生成方式的典型场景是文本生成和自动完成功能。
-
条件概率:CLM 通过条件概率链生成序列。假设我们有一个词序列
𝑤 1 , 𝑤 2 , . . . , 𝑤 𝑛 w 1 , w 2 , . . . , w n 𝑤 1 , 𝑤 2 , . . . , 𝑤 𝑛 w 1 ,w 2 ,...,w n w1,w2,...,wnw1,w2,...,wn
那么自回归语言模型的目标是学习该序列的联合概率分布:
P ( w 1 , w 2 , . . . , w n ) = P ( w 1 ) × P ( w 2 ∣ w 1 ) × P ( w 3 ∣ w 1 , w 2 ) × . . . × P ( w n ∣ w 1 , w 2 , . . . , w n − 1 ) P(w 1 ,w 2 ,...,w n )=P(w 1 )×P(w 2 ∣w 1 )×P(w 3 ∣w 1 ,w 2 )×...×P(w n ∣w 1 ,w 2 ,...,w n−1 ) P(w1,w2,...,wn)=P(w1)×P(w2∣w1)×P(w3∣w1,w2)×...×P(wn∣w1,w2,...,wn−1)
通过依次条件化每个词,它将整个句子的生成过程分解为一系列的逐步预测,即:- 预测第一个词
w1
- 基于
w1
预测第二个词w2
- 基于
w1,w2
预测第三个词w3
- … 直到预测完整个句子。
这种生成方式保证了在生成过程中,每个词只能“看”到它之前生成的词,而无法访问未来的词,这意味着每个词的生成都依赖于前面生成的词。
- 预测第一个词
代表性模型:
- GPT 系列:GPT(Generative Pre-trained Transformer)是最典型的 CLM。它基于自回归原理,逐步生成文本。
- Transformer-XL:也是自回归语言模型,特别适用于处理长文本。
CLM 的应用场景:
- 文本生成:如 GPT 系列模型逐步生成文本片段,非常适合创作、对话等场景。
- 自动补全:比如代码自动补全或文本自动补全。
- 生成任务:生成文章、诗歌、对话等。
CLM 与其他模型的区别:
- 与双向模型的区别:CLM 是单向的,仅利用历史信息进行生成。而双向语言模型,如 BERT,使用上下文信息(即前后都能看到),但它们主要用于理解任务,而不是生成任务。
- 与 Seq2Seq 模型的区别:CLM 是自回归生成模型,没有编码器部分,而序列到序列模型(如 T5、BART)则有编码器-解码器架构,能够同时使用输入序列信息进行生成。
总结:
CLM 强调生成过程中的因果关系(causality),每个词的生成依赖前面的上下文,但不能使用后面的信息。它非常适合文本生成任务,尤其是在需要逐步生成完整序列的场景下,如对话、文本补全等。
LLM 与 CLM 的区别与联系:
- 规模 vs 架构:
- LLM:强调的是模型的规模。LLM 可以是 CLM,也可以是其他类型的语言模型,比如双向语言模型(如 BERT)或序列到序列模型(如 T5)。
- CLM:强调的是模型的生成架构,具体指代自回归语言模型。这类模型可能是 LLM,也可能是较小的语言模型。
- 任务类型:
- LLM:可以处理各种任务,包括自然语言理解(如分类、命名实体识别)和生成任务(如文本生成、翻译)。
- CLM:专注于生成任务,特别是逐步生成序列的任务,典型应用包括对话生成、文本补全等。
- 应用领域:
- LLM:可以用在多种领域,比如对话系统、文本生成、机器翻译、情感分析等。
- CLM:主要应用于生成式任务,如文本生成、自动完成功能、对话生成等。
总结:
- LLM(大型语言模型) 是指参数量大、训练数据丰富的通用语言模型,可以应用于多种自然语言处理任务,强调的是模型的规模和能力。
- CLM(自回归语言模型) 是一种具体的语言模型类型,它强调通过自回归方式逐步生成序列,广泛用于文本生成任务。
因此,LLM 可以包含 CLM 作为其子集,但并不局限于 CLM。