pytorch中几个重要的操作意思

optimizer.zero_grad()	#把每个参数的梯度设置为0
loss.backyard()	#计算参数梯度
optimizer.step()	#更新梯度

loss的计算方法为每一个epoch的所有loss相加,取平均值

#这样就可以定义一个感知机
net = nn.Sequential(nn.Linear(4, 10), nn.ReLU(), nn.Linear(10, 1))
tensor转为numpy
tensor.detach().numpy()
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值