Milo | 细胞分布差异

Milo是一种利用KNN方法检测细胞在不同实验条件下分布差异的算法。它分析细胞的邻近关系,通过比较邻近细胞中各条件的富集情况,揭示细胞群体的条件相关性。在UMAP空间上,颜色编码显示了特定条件的细胞聚集区域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Milo是一个检测细胞分布在不同实验条件下差异的算法(https://github.com/MarioniLab/miloR )。

 

主要原理:先根据KNN方法进行细胞抽样,对抽样后的细胞用KNN找它的邻近细胞,图c里面每个圈代表一个抽样的细胞,圈的大小代表临近细胞数量的多少。细胞之间的连线代表这两个细胞共享多少个邻近细胞,线越粗共享的邻近细胞数量越大,之后检验每个细胞的邻近细胞中来源于不同实验条件的细胞数量是否存在显著差异。显著富集某个条件的细胞就会标那个条件的颜色,最后看在整体UMAP空间上,哪个区域集中有某个条件的颜色,说明这个区域的细胞就在那个条件富集,与那个条件相关。

 参考文献:Nature Biotechnology, 2022, 40, 245–253.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值