一、样本空间与随机事件
1.随机试验
- 相同条件下,试验可以重复进行
- 试验结果不止一个,但是试验之前可以知道所有可能出现的结果
- 试验前不能确定每次试验的结果是哪一个
2.样本空间
随机试验中所有可能的结果(样本点)组成的集合。
3.随机事件
随机试验的样本空间的子集,即样本点的集合。
二、概率与独立
1.概率
- 非负性:对于任意随机事件A, P ( A ) ≥ 0 P(A)\geq0 P(A)≥0
- 规范性:对于必然事件S, P ( S ) = 1 P(S)=1 P(S)=1
- 可列可加性:若 A 1 , A 2 , ⋅ ⋅ ⋅ A_1,A_2,··· A1,A2,⋅⋅⋅是两两互不相容事件,则有 P ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 n P ( A i ) P \left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^nP(A_i) P(i=1⋃∞Ai)=i=1∑nP(Ai)称 P ( A ) P(A) P(A)为事件A的概率。
2.条件概率
事件A发生的条件下事件B发生的概率,记:
P
(
B
∣
A
)
=
P
(
A
B
)
P
(
A
)
,
P
(
A
)
≥
0
P(B|A)=\frac{P(AB)}{P(A)} {,P(A)\geq0}
P(B∣A)=P(A)P(AB),P(A)≥0推广,乘法定理:
P
(
A
B
)
=
P
(
A
)
P
(
B
∣
A
)
=
P
(
B
)
P
(
A
∣
B
)
P(AB)=P(A)P(B|A)=P(B)P(A|B)
P(AB)=P(A)P(B∣A)=P(B)P(A∣B)
理解:
假设甲、乙、丙三个工厂生产了一批产品,事件
A
A
A为“产品是甲厂生产的”,事件
B
B
B为“产品是正品”,从中任取一件产品,
P
(
A
B
)
:
取
得
的
产
品
是
甲
厂
生
产
且
为
正
品
的
概
率
P(AB):取得的产品是甲厂生产且为正品的概率
P(AB):取得的产品是甲厂生产且为正品的概率
P
(
B
∣
A
)
:
已
知
取
得
的
产
品
为
甲
厂
生
产
,
产
品
为
正
品
的
概
率
P(B|A):已知取得的产品为甲厂生产,产品为正品的概率
P(B∣A):已知取得的产品为甲厂生产,产品为正品的概率
P
(
A
)
:
取
得
的
产
品
是
甲
厂
生
产
的
概
率
P(A):取得的产品是甲厂生产的概率
P(A):取得的产品是甲厂生产的概率
P
(
B
∣
A
)
=
甲
厂
生
产
的
正
品
件
数
甲
厂
生
产
的
总
产
品
数
=
甲
厂
生
产
的
正
品
件
数
/
总
产
品
数
甲
厂
生
产
的
总
产
品
数
/
总
产
品
数
=
P
(
A
B
)
P
(
A
)
P(B|A)=\frac{甲厂生产的正品件数}{甲厂生产的总产品数}=\frac{甲厂生产的正品件数/总产品数}{甲厂生产的总产品数/总产品数}=\frac{P(AB)}{P(A)}
P(B∣A)=甲厂生产的总产品数甲厂生产的正品件数=甲厂生产的总产品数/总产品数甲厂生产的正品件数/总产品数=P(A)P(AB)
3.全概率公式
设随机试验
E
E
E的样本空间为
S
S
S,
B
1
,
B
2
,
⋅
⋅
⋅
,
B
n
B_1,B_2,···,B_n
B1,B2,⋅⋅⋅,Bn是样本空间
S
S
S的一个划分,且
P
(
B
i
)
>
0
,
i
=
1
,
2
,
⋅
⋅
⋅
,
n
P(B_i)>0,i=1,2,···,n
P(Bi)>0,i=1,2,⋅⋅⋅,n,则对于任一事件
A
A
A,有
P
(
A
)
=
P
(
B
1
)
P
(
A
∣
B
1
)
+
P
(
B
2
)
P
(
A
∣
B
2
)
+
P
(
A
)
P
(
A
∣
B
3
)
+
⋅
⋅
⋅
+
P
(
A
)
P
(
A
∣
B
n
)
P(A)=P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+P(A)P(A|B_3)+···+P(A)P(A|B_n)
P(A)=P(B1)P(A∣B1)+P(B2)P(A∣B2)+P(A)P(A∣B3)+⋅⋅⋅+P(A)P(A∣Bn)此式就是全概率公式,即
P
(
A
)
=
∑
i
=
1
n
P
(
B
i
)
P
(
A
∣
B
i
)
P(A)=\sum_{i=1}^nP(B_i)P(A|B_i)
P(A)=i=1∑nP(Bi)P(A∣Bi)
理解:
假设甲、乙、丙三个工厂生产了一批产品,事件A为“这件产品是正品”,事件
B
1
,
B
2
,
B
3
B_1,B_2,B_3
B1,B2,B3分别为“这件产品是甲厂、乙厂、丙厂生产的”,从中任取一件产品,求这件产品为正品的概率。
P
(
A
)
=
甲
厂
正
品
数
+
乙
厂
正
品
数
+
丙
厂
正
品
数
总
产
品
数
=
甲
厂
正
品
数
总
正
品
数
+
乙
厂
正
品
数
总
正
品
数
+
丙
厂
正
品
数
总
正
品
数
=
P
(
A
B
1
)
+
P
(
A
B
2
)
+
P
(
A
B
3
)
=
P
(
B
1
)
P
(
A
∣
B
1
)
+
P
(
B
2
)
P
(
A
∣
B
2
)
+
P
(
A
)
P
(
A
∣
B
3
)
P(A)=\frac{甲厂正品数+乙厂正品数+丙厂正品数}{总产品数}=\frac{甲厂正品数}{总正品数}+\frac{乙厂正品数}{总正品数}+\frac{丙厂正品数}{总正品数}=P(AB_1)+P(AB_2)+P(AB_3)=P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+P(A)P(A|B_3)
P(A)=总产品数甲厂正品数+乙厂正品数+丙厂正品数=总正品数甲厂正品数+总正品数乙厂正品数+总正品数丙厂正品数=P(AB1)+P(AB2)+P(AB3)=P(B1)P(A∣B1)+P(B2)P(A∣B2)+P(A)P(A∣B3)
即
P
(
A
)
=
∑
B
P
(
A
B
)
,
离
散
P(A)=\sum_BP(AB),{离散}
P(A)=B∑P(AB),离散
P
(
A
)
=
∫
P
(
A
B
)
d
B
,
连
续
P(A)=\int{P(AB)}dB,{连续}
P(A)=∫P(AB)dB,连续
根据条件概率公式
P
(
A
)
=
∑
B
P
(
B
)
P
(
A
∣
B
)
P(A)=\sum_BP(B)P(A|B)
P(A)=B∑P(B)P(A∣B)
4.贝叶斯公式
设随机试验
E
E
E的样本空间为
S
S
S,
B
1
,
B
2
,
⋅
⋅
⋅
,
B
n
B_1,B_2,···,B_n
B1,B2,⋅⋅⋅,Bn是样本空间
S
S
S的一个划分,且
P
(
B
i
)
>
0
,
i
=
1
,
2
,
⋅
⋅
⋅
,
n
P(B_i)>0,i=1,2,···,n
P(Bi)>0,i=1,2,⋅⋅⋅,n,对于任意事件
A
A
A,有
P
(
B
i
∣
A
)
=
P
(
B
i
)
P
(
A
∣
B
i
)
∑
j
=
1
n
P
(
B
j
)
P
(
A
∣
B
j
)
P(B_i|A)=\frac{P(B_i)P(A|B_i)}{\sum_{j=1}^nP(B_j)P(A|B_j)}
P(Bi∣A)=∑j=1nP(Bj)P(A∣Bj)P(Bi)P(A∣Bi)
这就是著名的贝叶斯公式。
贝叶斯公式的推导有很多,下面从乘法公式入手:
P
(
A
B
)
=
P
(
A
)
P
(
B
∣
A
)
=
P
(
B
)
P
(
A
∣
B
)
P(AB)=P(A)P(B|A)=P(B)P(A|B)
P(AB)=P(A)P(B∣A)=P(B)P(A∣B)
P
(
B
∣
A
)
=
P
(
B
)
P
(
A
∣
B
)
P
(
A
)
=
p
e
r
i
o
r
+
l
i
k
e
l
i
h
o
o
d
e
v
i
d
e
n
c
e
P(B|A)=\frac{P(B)P(A|B)}{P(A)}=\frac{perior+likelihood}{evidence}
P(B∣A)=P(A)P(B)P(A∣B)=evidenceperior+likelihood
理解1:
假设甲、乙、丙三个工厂生产了一批产品,事件A为“这件产品是正品”,事件
B
1
,
B
2
,
B
3
B_1,B_2,B_3
B1,B2,B3分别为“这件产品是甲厂、乙厂、丙厂生产的”,从中任取一件产品,已知这件产品为正品,求是甲厂生产的概率。
P
(
B
1
∣
A
)
:
已
知
产
品
为
正
品
且
产
品
是
甲
厂
生
产
的
概
率
,
后
验
概
率
P(B_1|A):已知产品为正品且产品是甲厂生产的概率,后验概率
P(B1∣A):已知产品为正品且产品是甲厂生产的概率,后验概率
P
(
A
∣
B
1
)
:
甲
厂
的
正
品
率
,
似
然
概
率
P(A|B_1):甲厂的正品率,似然概率
P(A∣B1):甲厂的正品率,似然概率
P
(
B
1
)
:
抽
取
的
产
品
是
甲
厂
生
产
的
概
率
,
先
验
概
率
P(B_1):抽取的产品是甲厂生产的概率,先验概率
P(B1):抽取的产品是甲厂生产的概率,先验概率
P
(
B
1
∣
A
)
=
甲
厂
生
产
的
正
品
数
总
正
品
数
=
甲
厂
生
产
的
正
品
数
/
总
产
品
数
(
甲
正
品
数
+
乙
正
品
数
+
丙
正
品
数
)
/
总
产
品
数
=
P
(
A
B
1
)
P
(
A
B
1
)
+
P
(
A
B
2
)
+
P
(
A
B
3
)
=
P
(
B
i
)
P
(
A
∣
B
i
)
∑
j
=
1
3
P
(
B
j
)
P
(
A
∣
B
j
)
P(B_1|A)=\frac{甲厂生产的正品数}{总正品数}=\frac{甲厂生产的正品数/总产品数}{(甲正品数+乙正品数+丙正品数)/总产品数}=\frac{P(AB_1)}{P(AB_1)+P(AB_2)+P(AB_3)}=\frac{P(B_i)P(A|B_i)}{\sum_{j=1}^3P(B_j)P(A|B_j)}
P(B1∣A)=总正品数甲厂生产的正品数=(甲正品数+乙正品数+丙正品数)/总产品数甲厂生产的正品数/总产品数=P(AB1)+P(AB2)+P(AB3)P(AB1)=∑j=13P(Bj)P(A∣Bj)P(Bi)P(A∣Bi)
理解2:
P
(
B
∣
A
)
=
P
(
A
∣
B
)
P
(
A
)
×
P
(
B
)
P(B|A)=\frac{P(A|B)}{P(A)}\times{P(B)}
P(B∣A)=P(A)P(A∣B)×P(B)
其中,
P
(
A
∣
B
)
P
(
A
)
\frac{P(A|B)}{P(A)}
P(A)P(A∣B)作为参数对
P
(
B
)
P(B)
P(B)进行修正,转换为
A
A
A条件下
B
B
B的概率,即当甲厂正品率越高时,
P
(
A
∣
B
)
P(A|B)
P(A∣B)越大,抽中的正品是甲厂生产的概率
P
(
B
∣
A
)
P(B|A)
P(B∣A)也越大。
理解3:
P
(
B
∣
A
)
=
P
(
B
)
P
(
A
∣
B
)
P
(
A
)
P(B|A)=\frac{P(B)P(A|B)}{P(A)}
P(B∣A)=P(A)P(B)P(A∣B)两边关于B求和:
∑
B
P
(
B
∣
A
)
=
∑
B
P
(
B
)
P
(
A
∣
B
)
P
(
A
)
\sum_B{P(B|A)}=\sum_B{\frac{P(B)P(A|B)}{P(A)}}
B∑P(B∣A)=B∑P(A)P(B)P(A∣B)
1
=
∑
B
P
(
A
B
)
P
(
A
)
=
P
(
A
)
P
(
A
)
1=\sum_B{\frac{P(AB)}{P(A)}}=\frac{P(A)}{P(A)}
1=B∑P(A)P(AB)=P(A)P(A)
也可以理解为,
P
(
A
)
P(A)
P(A)是与
B
B
B无关的常数,为了保证等式左边求和等于1,在
P
(
A
B
)
P(AB)
P(AB)下面做归一化处理,即除以
P
(
A
)
P(A)
P(A),因为
P
(
A
B
)
P(AB)
P(AB)即
P
(
B
)
P
(
A
∣
B
)
P(B)P(A|B)
P(B)P(A∣B)关于
B
B
B的总和就是
P
(
A
)
P(A)
P(A),以保证等式左右两边相等。
归一化:
P
(
B
i
∣
A
)
=
P
(
B
i
)
P
(
A
∣
B
i
)
∑
j
=
1
n
P
(
B
j
)
P
(
A
∣
B
j
)
P(B_i|A)=\frac{P(B_i)P(A|B_i)}{\sum_{j=1}^nP(B_j)P(A|B_j)}
P(Bi∣A)=∑j=1nP(Bj)P(A∣Bj)P(Bi)P(A∣Bi)
P
(
B
i
∣
A
)
=
η
P
(
B
i
)
P
(
A
∣
B
i
)
,
其
中
,
η
−
1
=
∑
j
=
1
n
P
(
B
j
)
P
(
A
∣
B
j
)
P(B_i|A)=\eta{P(B_i)P(A|B_i)},{其中,\eta^{-1}=\sum_{j=1}^nP(B_j){P(A|B_j)}}
P(Bi∣A)=ηP(Bi)P(A∣Bi),其中,η−1=j=1∑nP(Bj)P(A∣Bj)
理解4:向贝叶斯公式增加随机变量:
当向上述贝叶斯公式中添加变量时,容易求得,下面公式也是成立的,为了和《概率机器人》统一,用
x
,
y
x,y
x,y替换上述
A
,
B
A,B
A,B:
P
(
x
∣
y
,
z
)
=
P
(
y
∣
x
,
z
)
P
(
x
∣
z
)
P
(
y
∣
z
)
P(x|y,z)=\frac{P(y|x,z)P(x|z)}{P(y|z)}
P(x∣y,z)=P(y∣z)P(y∣x,z)P(x∣z)
可以这样粗略理解,由于
∑
x
P
(
x
)
=
1
\sum_xP(x)=1
∑xP(x)=1,可得
∑
x
P
(
x
∣
y
)
=
1
\sum_xP(x|y)=1
∑xP(x∣y)=1
5.事件的独立性
在概率论中,我们讨论的独立是:
P
(
A
B
)
=
P
(
B
∣
A
)
P
(
A
)
=
P
(
B
)
P
(
A
)
P(AB)=P(B|A)P(A)=P(B)P(A)
P(AB)=P(B∣A)P(A)=P(B)P(A)
即事件
A
A
A的发生不会影响事件
B
B
B发生的可能性。
条件独立:
类似的,以其他变量
z
z
z为条件下的,相互独立的
x
,
y
x,y
x,y的联合概率公式:
P
(
x
,
y
∣
z
)
=
P
(
x
∣
z
)
P
(
y
∣
z
)
P(x,y|z)=P(x|z)P(y|z)
P(x,y∣z)=P(x∣z)P(y∣z)
等价于:
P
(
x
∣
z
)
=
P
(
x
∣
y
,
z
)
P(x|z)=P(x|y,z)
P(x∣z)=P(x∣y,z)
P
(
y
∣
z
)
=
P
(
y
∣
x
,
z
)
P(y|z)=P(y|x,z)
P(y∣z)=P(y∣x,z)
但是,以
z
z
z为条件的
x
,
y
x,y
x,y独立,并不能推出
x
,
y
x,y
x,y绝对独立:
P
(
x
,
y
∣
z
)
=
P
(
x
∣
z
)
P
(
y
∣
z
)
≠
>
P
(
x
,
y
)
=
P
(
x
)
P
(
y
)
P(x,y|z)=P(x|z)P(y|z)\neq>P(x,y)=P(x)P(y)
P(x,y∣z)=P(x∣z)P(y∣z)=>P(x,y)=P(x)P(y)
三、随机变量及其分布
1.随机变量
随机试验结果所对应的实数值
2.离散型随机变量及其分布
(1)分布律
离散型随机变量所有可能的取值及其对应的概率
(2)分布函数
随机变量
X
X
X对任意实数
x
x
x有:
F
(
x
)
=
P
{
X
≤
x
}
,
−
∞
<
x
<
+
∞
F(x)=P\{X\leq x\},-\infty<x<+\infty
F(x)=P{X≤x},−∞<x<+∞
表示随机变量落在某一区间的概率
(3)0-1分布(两点分布)
试验的样本空间只有两个元素
X X X | 0 0 0 | 1 1 1 |
---|---|---|
P P P | 1 − p 1-p 1−p | p p p |
(4)二项分布
试验的结果有两种,独立重复地进行
n
n
n次称为
n
n
n重伯努利试验
X
∼
b
(
n
,
p
)
:
X\sim{b(n,p)} :
X∼b(n,p):
P
(
X
=
k
)
=
C
n
k
p
k
(
1
−
p
)
n
−
k
,
k
=
0
,
1
,
2
,
⋅
⋅
⋅
,
n
P(X=k)=C_n^kp^k(1-p)^{n-k},k=0,1,2,···,n
P(X=k)=Cnkpk(1−p)n−k,k=0,1,2,⋅⋅⋅,n
(5)泊松分布
随机变量
X
X
X的取值可以是
1
,
2
,
⋅
⋅
⋅
1,2,···
1,2,⋅⋅⋅
X
∼
π
(
λ
)
:
X\sim{\pi(\lambda)}:
X∼π(λ):
P
(
X
=
k
)
=
λ
k
k
!
e
−
λ
,
k
=
0
,
1
,
2
,
⋅
⋅
⋅
P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,···
P(X=k)=k!λke−λ,k=0,1,2,⋅⋅⋅
2.连续型随机变量及其分布
(1)分布函数及概率密度
对于随机变量
X
X
X的分布函数
F
(
x
)
F(x)
F(x),若存在非负函数
f
(
x
)
f(x)
f(x),使得对任意
x
x
x有
F
(
x
)
=
∫
−
∞
x
f
(
t
)
d
t
F(x)=\int_{-\infty}^{x}f(t)dt
F(x)=∫−∞xf(t)dt
f
(
x
)
f(x)
f(x)为
x
x
x的概率密度函数。
(2)均匀分布
X
∼
U
(
a
,
b
)
:
X\sim{U(a,b)} :
X∼U(a,b):
f
(
x
)
=
{
1
b
−
a
,
a
<
x
<
b
0
,
其
他
f(x) = \begin{cases} \frac{1}{b-a}, & \text{$a<x<b$} \\ 0, & \text{$其他$} \end{cases}
f(x)={b−a1,0,a<x<b其他
(3)指数分布
随机变量
X
X
X的概率密度为:
f
(
x
)
=
{
1
θ
e
−
x
/
θ
,
a
<
x
<
b
0
,
其
他
f(x) = \begin{cases} \frac{1}{\theta}e^{-x/\theta}, & \text{$a<x<b$} \\ 0, & \text{$其他$} \end{cases}
f(x)={θ1e−x/θ,0,a<x<b其他
(4)正态分布
X
∼
N
(
μ
,
σ
2
)
:
X\sim{N(\mu,\sigma^2)} :
X∼N(μ,σ2):
f
(
x
)
=
1
2
π
σ
e
−
(
x
−
μ
)
2
2
σ
2
,
−
∞
<
x
<
+
∞
f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},-\infty<x<+\infty
f(x)=2πσ1e−2σ2(x−μ)2,−∞<x<+∞
称随机变量
X
X
X服从参数为
μ
\mu
μ,
σ
\sigma
σ的正态分布。
四、随机变量的数字特征
1.期望(均值)
离散型随机变量
X
X
X的分布律为:
P
{
X
=
x
k
}
=
p
k
,
k
=
1
,
2
,
⋅
⋅
⋅
,
P\{X=x_k\}=p_k,k=1,2,···,
P{X=xk}=pk,k=1,2,⋅⋅⋅,
若级数
∑
k
=
1
∞
x
k
p
k
\sum_{k=1}^\infty x_kp_k
∑k=1∞xkpk收敛,
E
(
x
)
=
∑
k
=
1
∞
x
k
p
k
E(x)=\sum_{k=1}^\infty x_kp_k
E(x)=k=1∑∞xkpk
E
(
x
)
=
∫
−
∞
+
∞
x
f
(
x
)
d
x
E(x)=\int_{-\infty}^{+\infty} xf(x)dx
E(x)=∫−∞+∞xf(x)dx
性质:
- E ( k ) = k E(k)=k E(k)=k
- E ( k X ) = k E ( X ) E(kX)=kE(X) E(kX)=kE(X)
- E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y)
- 若 X , Y X,Y X,Y相互独立, E ( X Y ) = E ( X ) + E ( Y ) E(XY)=E(X)+E(Y) E(XY)=E(X)+E(Y)
2.方差
D
(
X
)
=
E
{
[
X
−
E
(
X
)
]
2
}
D(X)=E\{[X-E(X)]^2\}
D(X)=E{[X−E(X)]2}
D
(
X
)
=
E
(
X
2
)
−
[
E
(
X
)
]
2
D(X)=E(X^2)-[E(X)]^2
D(X)=E(X2)−[E(X)]2
性质:
- D ( k ) = 0 D(k)=0 D(k)=0
- D ( k X ) = k 2 D ( X ) D(kX)=k^2D(X) D(kX)=k2D(X)
-
D
(
X
+
Y
)
=
D
(
X
)
+
D
(
Y
)
+
2
E
{
[
X
−
E
(
X
)
]
[
Y
−
E
(
Y
)
]
}
=
D
(
X
)
+
D
(
Y
)
+
2
[
E
(
X
Y
)
−
E
(
X
)
E
(
Y
)
]
D(X+Y)=D(X)+D(Y)+2E\{[X-E(X)][Y-E(Y)]\}=D(X)+D(Y)+2[E(XY)-E(X)E(Y)]
D(X+Y)=D(X)+D(Y)+2E{[X−E(X)][Y−E(Y)]}=D(X)+D(Y)+2[E(XY)−E(X)E(Y)]
若 X , Y X,Y X,Y相互独立,则有 D ( X + Y ) = D ( X ) + D ( Y ) D(X+Y)=D(X)+D(Y) D(X+Y)=D(X)+D(Y)
3.协方差
C
o
v
(
X
,
Y
)
=
E
{
[
X
−
E
(
X
)
]
[
Y
−
E
(
Y
)
]
}
Cov(X,Y)=E\{[X-E(X)][Y-E(Y)]\}
Cov(X,Y)=E{[X−E(X)][Y−E(Y)]}
性质:
- C o v ( X , Y ) = C o v ( Y , X ) Cov(X,Y)=Cov(Y,X) Cov(X,Y)=Cov(Y,X)
- C o v ( X , X ) = D ( X ) Cov(X,X)=D(X) Cov(X,X)=D(X)
- D ( X + Y ) = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) D(X+Y)=D(X)+D(Y)+2Cov(X,Y) D(X+Y)=D(X)+D(Y)+2Cov(X,Y)
- C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY)-E(X)E(Y) Cov(X,Y)=E(XY)−E(X)E(Y)
- C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y)
-
C
o
v
(
X
1
+
X
2
,
Y
)
=
C
o
v
(
X
1
,
Y
)
+
C
o
v
(
X
2
,
Y
)
Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y)
Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
协方差矩阵
设 n n n维随机变量 ( X 1 , X 2 , ⋅ ⋅ ⋅ , X n ) (X_1,X_2,···,X_n) (X1,X2,⋅⋅⋅,Xn)的二阶混合中心距
c i j = C o v ( X i , Y j ) = E { [ X i − E ( X i ) ] [ X j − E ( X j ) ] } , i , j = 1 , 2 , ⋅ ⋅ ⋅ , n c_{ij}=Cov(X_i,Y_j)=E\{[X_i-E(X_i)][X_j-E(X_j)]\},i,j=1,2,···,n cij=Cov(Xi,Yj)=E{[Xi−E(Xi)][Xj−E(Xj)]},i,j=1,2,⋅⋅⋅,n
都存在,则
C = ( c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋮ ⋮ ⋱ ⋮ c n 1 c n 2 ⋯ c n n ) C= \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \\ \end{pmatrix} C=⎝⎜⎜⎜⎛c11c21⋮cn1c12c22⋮cn2⋯⋯⋱⋯c1nc2n⋮cnn⎠⎟⎟⎟⎞为 n n n维随机变量 ( X 1 , X 2 , ⋅ ⋅ ⋅ , X n ) (X_1,X_2,···,X_n) (X1,X2,⋅⋅⋅,Xn)的协方差矩阵。
4.矩
k
k
k阶原点矩
E
(
X
k
)
,
k
=
1
,
2
,
⋅
⋅
⋅
E(X^k),k=1,2,···
E(Xk),k=1,2,⋅⋅⋅
k
k
k阶中心矩
E
{
[
X
−
E
(
X
)
]
k
}
,
k
=
1
,
2
,
⋅
⋅
⋅
E\{[X-E(X)]^k\},k=1,2,···
E{[X−E(X)]k},k=1,2,⋅⋅⋅
k
+
l
k+l
k+l阶混合矩
E
{
X
k
Y
l
}
,
k
,
l
=
1
,
2
,
⋅
⋅
⋅
E\{X^kY^l\},k,l=1,2,···
E{XkYl},k,l=1,2,⋅⋅⋅
k
+
l
k+l
k+l阶混合中心矩
E
{
[
X
−
E
(
X
)
]
k
[
Y
−
E
(
Y
)
]
l
}
,
k
,
l
=
1
,
2
,
⋅
⋅
⋅
E\{[X-E(X)]^k[Y-E(Y)]^l\},k,l=1,2,···
E{[X−E(X)]k[Y−E(Y)]l},k,l=1,2,⋅⋅⋅