Dynamic-VINS论文阅读

RGB-D Inertial Odometry for a Resource-Restricted Robot in Dynamic Environments
2022年IROS录用,哈尔滨工业大学工作。
在VINS-Mono的基础上加入YoloV3的目标检测算法,对动态目标进行检测和剔除,可以在嵌入式计算机上进行实时计算,定位结果良好。

摘要

现有的同步定位与映射(SLAM)算法在静态环境中性能良好,但在动态环境中容易失效。最近的研究将基于深度学习的语义信息引入SLAM系统,以减少动态对象的影响。然而,资源受限机器人在动态环境下的鲁棒定位仍然具有挑战性。本文提出了一种动态环境下资源受限机器人的实时RGB-D惯性里程测量系统——Dynamic-VINS。
三个主线程并行运行:目标检测、特征跟踪和状态优化。所提出的Dynamic-VINS将目标检测和深度信息结合起来进行动态特征识别,并达到了与语义分割相当的性能。Dynamic-VINS采用基于网格的特征检测,提出了一种快速高效的FAST特征点提取方法。将IMU应用于运动预测,进行特征跟踪和运动一致性检测。该方法在公共数据集和实际应用上进行了评估,在动态环境中显示出具有竞争力的定位精度和鲁棒性。据我们所知,它是目前动态环境下资源受限平台上性能最好的实时RGB-D惯性里程计。

系统框架

在这里插入图片描述
彩色图像被传递给对象检测线程和特征跟踪线程。两个连续帧之间的IMU测量值被预积分,用于特征跟踪、移动一致性检查和状态优化。

方法

  1. 特征匹配
    在这里插入图片描述
    对于每帧传入的图像,使用KLT稀疏光流方法跟踪特征点。本文利用帧间的IMU测量来预测特征的运动。提供更好的特征初始位置估计,提高了特征跟踪效率。它可以有效地丢弃噪声带来的不稳定特征和运动不一致的动态特征。
    1)根据IMU预积分预测特征点在新帧中的位置
    2)以预测位置作为初始值进行光流跟踪迭代的初始值
    3)跟踪成功标为红色,失败标为紫色
    4)对于跟踪成功的点(即稳定的特征点),以特征点中心建立橙色圆形mask;跟踪失败的点(即不稳定特征点),以特征点中心建立紫色圆形mask
    5)接下来在mask以外区域进行特征检测以补充特征点
    上述方法可以获得均匀分布的特征,避免在纹理模糊或弱的区域上重复提取不稳定的特征。
  2. 基于网格的特征检测
    为了稳定,系统保持最少数量的特性。因此,需要不断地从帧中提取特征点。该文采用基于网格的特征检测。将图像划分为网格,并对每个网格的边界进行填充,以防止网格边缘的特征被忽略;填充使当前网格能够获取相邻像素信息进行特征检测。
    与遍历整个图像来检测特征不同,只有匹配特征不足的网格才会进行特征检测。由于纹理较弱或被mask覆盖而无法检测到特征的网格单元将在下一帧检测中跳过,避免重复无用检测。采用线程池技术,提高了基于网格的特征检测的并行性能。因此,在不损失的情况下,显著减少了特征检测的时间。
  3. 动态特征识别
    动态目标的长期特征跟踪会伴随异常运动,引入错误的约束。使用YoloV3检测动态元素,如人和车。如果检测到的边界框覆盖了图像的较大区域,盲目删除边界框中的特征点可能会导致没有可用的特征来提供约束。因此,类语义分割有助于跟踪不被动态对象遮挡的特征,从而维持系统的运行。
    因此,将检测到的边界框中的点与深度信息相结合。
    在这里插入图片描述
    大部分动态对象的边界框上的角点都是背景点,且背景点与动态目标点的深度值相差较大。定义第k个动态目标的背景最大深度:在这里插入图片描述
    定义第k个动态边界框的深度阈值,介于边界框中心点深度与背景最大深度值之间:
    在这里插入图片描述
    在动态分割区域内将第k个动态对象区域设为加权深度(即计算得到的深度阈值),其他区域设为0。每个检测的特征点的深度与该区域的深度阈值做对比,特征点深度小于该区域阈值,则认为是动态特征点。
    考虑到动态对象可能长期存在于视场中,因此对动态特征进行跟踪而不用于姿态估计,而不是直接删除动态特征。每个特征跟踪线程传入的特征点将被判断是否为历史动态特征。该方法可以避免盲目删除特征点,同时保证效率。它可以节省动态目标特征检测的时间,对目标检测的漏检具有鲁棒性,并可回收假阳性动态特征。
  4. 错失特征补偿
    由于目标检测有时可能失败,本文提出的VINS利用之前的检测结果来预测接下来的检测结果,以弥补遗漏的检测。假设相邻帧中的动态对象具有一致的运动。一旦动态物体被检测到,它的像素速度和包围框将被更新。
    定义第k个动态目标(中心点)在相邻帧间的移动速度:
    在这里插入图片描述
    在新帧下的预测值:
    在这里插入图片描述
    若新帧未检测到该动态目标,则根据预测值预测该目标在新帧下的位置:
    在这里插入图片描述
    当连续时间阈值下检测不到时,放弃该动态对象的补偿。该方法提高了检测的查全率,有利于动态特征识别的一致性。
  5. 运动一致性检测
    由于物体检测只能识别人为定义的动态物体,存在漏检问题,状态优化仍然会受到未知移动物体的影响,比如人移动的书籍。Dyna-VINS将IMU预测的姿态与优化后的滑动窗口姿态相结合,实现动态特征识别。
    定义重投影误差:
    在这里插入图片描述
    重投影误差大于阈值则被认为是动态特征。

实验

  1. OpenLORIS数据集
    在这里插入图片描述
    黑点表示一个序列的开始。蓝点表示系统成功初始化时刻,蓝线表示系统成功跟踪跨度。office为静态场景,corridor,home包含无纹理的墙面和昏暗的灯光,home,cafe有一些坐着的人和小幅度运动,market包含大量行人和不可预测的运动物体,并场景最大
  2. TUM RGB-D 数据集
    该数据集无IMU数据,因此把Dyna-VINS简单地去掉了IMU部分。
    在这里插入图片描述
    消融实验:
    在这里插入图片描述
    CIRCULAR MASK:导致提取均匀分布的特征点失败
    OBJECT DETECTION:导致动态特征引入错误约束
    SEG-LIKE MASK:屏蔽整个动态框,说明背景特征有助于系统尽可能多的维持稳定特征点
  3. 运行时间分析
    在这里插入图片描述
  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
In this paper, we focus on the problem of motion tracking in unknown environments using visual and inertial sensors.We term this estimation task visual-inertial odometry (VIO), in analogy to the well-known visual-odometry problem. We present a detailed study of EKF-based VIO algorithms, by comparing both their theoretical properties and empirical performance. We show that an EKF formulation where the state vector comprises a sliding window of poses (the MSCKF algorithm) attains better accuracy, consistency, and computational efficiency than the SLAM formulation of the EKF, in which the state vector contains the current pose and the features seen by the camera. Moreover, we prove that both types of EKF approaches are inconsistent, due to the way in which Jacobians are computed. Specifically, we show that the observability properties of the EKF’s linearized system models do not match those of the underlying system, which causes the filters to underestimate the uncertainty in the state estimates. Based on our analysis, we propose a novel, real-time EKF-based VIO algorithm, which achieves consistent estimation by (i) ensuring the correct observability properties of its linearized system model, and (ii) performing online estimation of the camera-to-IMU calibration parameters. This algorithm, which we term MSCKF 2.0, is shown to achieve accuracy and consistency higher than even an iterative, sliding-window fixed-lag smoother, in both Monte-Carlo simulations and real-world testing. I
Abstract: Current approaches for visual-inertial odometry (VIO) are able to attain highly accurate state estimation via nonlinear optimization. However, real-time optimization quickly becomes infeasible as the trajectory grows over time; this problem is further emphasized by the fact that inertial measurements come at high rate, hence leading to fast growth of the number of variables in the optimization. In this paper, we address this issue by preintegrating inertial measurements between selected keyframes into single relative motion constraints. Our first contribution is a preintegration theory that properly addresses the manifold structure of the rotation group. We formally discuss the generative measurement model as well as the nature of the rotation noise and derive the expression for the maximum a posteriori state estimator. Our theoretical development enables the computation of all necessary Jacobians for the optimization and a-posteriori bias correction in analytic form. The second contribution is to show that the preintegrated IMU model can be seamlessly integrated into a visual-inertial pipeline under the unifying framework of factor graphs. This enables the application of incremental-smoothing algorithms and the use of a structureless model for visual measurements, which avoids optimizing over the 3D points, further accelerating the computation. We perform an extensive evaluation of our monocular VIO pipeline on real and simulated datasets. The results confirm that our modelling effort leads to accurate state estimation in real-time, outperforming state-of-the-art approaches.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值