摘要:串馈天线阵列设计的复杂度会随着阵元数目的上升急剧增加。对于毫米波串馈天线阵列,如果采用理想天线阵元近似会使性能恶化,而采用全波电磁仿真方法则会陷入非常耗时的迭代过程。本文提出了一种先验知识指导的基元建模方法和机器学习辅助的串馈天线阵列综合方法,大幅度降低训练和预测的时间同时提升预测精度。
一、研究背景
微带串馈天线阵列(Series-Fed Microstrip Antenna Array,SFMAA)由于其低剖面、低成本、低馈线损耗等优点,在无线通信、雷达等领域得到了广泛应用。微带串馈天线阵列综合问题的复杂度会随着阵元个数的上升快速增加。传统的依靠理想天线的方法和全波电磁仿真的方法会陷入性能恶化或耗时的迭代过程。采用机器学习辅助优化的智能设计方法会面临“维数灾难”,导致训练和预测时间的增加以及预测精度的下降。
本文提出了一种先验知识指导的基单元建模(Base Element Modeling,BEM)方法和机器学习辅助的微带串馈阵列综合方法。分析不同位置和尺寸的BE在串馈微带阵列中的相似性,将BE分为不同的种类。引入余弦域训练方法降低计算开销。利用阵列综合、微波网络级联与机器学习辅助优化的方法对SFMAA进行智能设计。先验知识指导与数据驱动的混合方法有利于加速综合过程,降低训练和预测的时间的同时提升精度。