串馈天线阵列智能设计

该研究提出了一种结合先验知识的基元建模方法和机器学习辅助的串馈天线阵列综合技术,用于降低设计复杂度和提高预测精度,有效解决了毫米波天线阵列设计中的时间和性能问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要:串馈天线阵列设计的复杂度会随着阵元数目的上升急剧增加。对于毫米波串馈天线阵列,如果采用理想天线阵元近似会使性能恶化,而采用全波电磁仿真方法则会陷入非常耗时的迭代过程。本文提出了一种先验知识指导的基元建模方法和机器学习辅助的串馈天线阵列综合方法,大幅度降低训练和预测的时间同时提升预测精度。

一、研究背景

微带串馈天线阵列(Series-Fed Microstrip Antenna Array,SFMAA)由于其低剖面、低成本、低馈线损耗等优点,在无线通信、雷达等领域得到了广泛应用。微带串馈天线阵列综合问题的复杂度会随着阵元个数的上升快速增加。传统的依靠理想天线的方法和全波电磁仿真的方法会陷入性能恶化或耗时的迭代过程。采用机器学习辅助优化的智能设计方法会面临“维数灾难”,导致训练和预测时间的增加以及预测精度的下降。

本文提出了一种先验知识指导的基单元建模(Base Element Modeling,BEM)方法和机器学习辅助的微带串馈阵列综合方法。分析不同位置和尺寸的BE在串馈微带阵列中的相似性,将BE分为不同的种类。引入余弦域训练方法降低计算开销。利用阵列综合、微波网络级联与机器学习辅助优化的方法对SFMAA进行智能设计。先验知识指导与数据驱动的混合方法有利于加速综合过程,降低训练和预测的时间的同时提升精度。

二、基单元建模  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BinaryStarXin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值