德国大陆毫米波雷达(ARS548)ROS驱动更改

文章目录


前言

ARS548的原始ROS驱动提供detection、object两种类型信息,这些信息均是自定义msg,不能直接通过topic发布sensor_msgs::PointCloud2和sensor_msgs::PointCloud信息。下面讲介绍detection。


Detecion

detection是提供的点云信息,而object是提供雷达检测到的具体物体信息。 下面是detection具体的相关信息。

在这里插入图片描述
我想要得到XYZ、RCS、Doppler、Probability,下面是转换函数代码。

void detectionReceive(const ars548_msg::DetectionList &msg)
{
    ROS_INFO("cl2run");
    uint size = msg.detection_array.size();

    // sensor_msgs::convertPointCloudToPointCloud2();

    static sensor_msgs::PointCloud2 cloud_msg;
    static sensor_msgs::PointCloud cloud_msg1;

    cloud_msg.header.frame_id = "/radar";
    cloud_msg.header.stamp = msg.detection_array[0].header.stamp;

    cloud_msg1.header.frame_id = "/radar";
    cloud_msg1.header.stamp = msg.detection_array[0].header.stamp;


    // 设置 PointCloud 的点和通道
    cloud_msg1.points.resize(size);
    cloud_msg1.channels.resize(3); // 我们有三个通道:probability 、 doppler、rcs
    cloud_msg1.channels[0].name = "probability";
    cloud_msg1.channels[0].values.resize(size);
    cloud_msg1.channels[1].name = "doppler";
    cloud_msg1.channels[1].values.resize(size);
    cloud_msg1.channels[2].name = "rcs";
    cloud_msg1.channels[2].values.resize(size);
    

    // 定义PointCloud2消息的字段
    sensor_msgs::PointCloud2Modifier modifier(cloud_msg);
    // modifier.setPointCloud2FieldsByString(3, "xyz");
    // modifier.setPointCloud2FieldsByString(4, "x", "y", "z", "intensity", "velocity");

    // 设置PointCloud2消息的宽度和高度
    cloud_msg.width = size;
    cloud_msg.height = 1;

    modifier.setPointCloud2Fields(6, "x", 1, sensor_msgs::PointField::FLOAT32,
                                  "y", 1, sensor_msgs::PointField::FLOAT32,
                                  "z", 1, sensor_msgs::PointField::FLOAT32,
                                  "probability", 1, sensor_msgs::PointField::FLOAT32,
                                  "doppler", 1, sensor_msgs::PointField::FLOAT32,
                                  "rcs", 1, sensor_msgs::PointField::FLOAT32);

    // for (size_t i = 0; i < size; ++i)
    // {
    //     // 计算字段在点云数据中的偏移位置
    //     uint8_t *point_data = &cloud_msg.data[i * cloud_msg.point_step];
    //     *(_Float32 *)(point_data + cloud_msg.fields[0].offset) = msg.detection_array[i].f_x;
    //     *(_Float32 *)(point_data + cloud_msg.fields[1].offset) = msg.detection_array[i].f_y;
    //     *(_Float32 *)(point_data + cloud_msg.fields[2].offset) = msg.detection_array[i].f_z;
    //     *(_Float32 *)(point_data + cloud_msg.fields[3].offset) = msg.detection_array[i].s_RCS;
    //     *(_Float32 *)(point_data + cloud_msg.fields[4].offset) = 0;
    // }

    // 获取字段的偏移量
    sensor_msgs::PointCloud2Iterator<float> iter_x(cloud_msg, "x");
    sensor_msgs::PointCloud2Iterator<float> iter_y(cloud_msg, "y");
    sensor_msgs::PointCloud2Iterator<float> iter_z(cloud_msg, "z");
    sensor_msgs::PointCloud2Iterator<float> iter_probability(cloud_msg, "probability");
    sensor_msgs::PointCloud2Iterator<float> iter_doppler(cloud_msg, "doppler");
    sensor_msgs::PointCloud2Iterator<float> iter_rcs(cloud_msg, "rcs");


    // 填充PointCloud2消息的数据
    for (uint i = 0; i < size; i++)
    {
        *iter_x = msg.detection_array[i].f_x;
        *iter_y = msg.detection_array[i].f_y;
        *iter_z = msg.detection_array[i].f_z;
        *iter_probability =msg.detection_array[i].u_PositivePredictiveValue;
        *iter_doppler =msg.detection_array[i].f_RangeRate;
        *iter_rcs =msg.detection_array[i].s_RCS;


        ++iter_x;
        ++iter_y;
        ++iter_z;
        ++iter_probability;
        ++iter_doppler;
        ++iter_rcs;

        cloud_msg1.points[i].x = msg.detection_array[i].f_x;
        cloud_msg1.points[i].y = msg.detection_array[i].f_y; 
        cloud_msg1.points[i].z = msg.detection_array[i].f_z;
        cloud_msg1.channels[0].values[i] = msg.detection_array[i].u_PositivePredictiveValue;
        cloud_msg1.channels[1].values[i] = msg.detection_array[i].f_RangeRate;
        cloud_msg1.channels[2].values[i] = msg.detection_array[i].s_RCS;


    }

    // 发布点云消息
    point_cloud2_pub.publish(cloud_msg);
    point_cloud_pub.publish(cloud_msg1);


    // detections_header_pub2.publish(cloud_msg.header);
}
ARS548 是一种常见的毫米波雷达传感器,广泛应用于自动驾驶和高级驾驶辅助系统(ADAS)。解析 ARS548 的数据需要了解其通信协议,通常基于 CAN 或 Ethernet。以下是一些关于 ARS548 数据解析和开源项目的相关信息: ### 开源项目与资源 1. **CAN 数据解析** ARS548 通过 CAN 总线传输数据时,遵循特定的 DBC 文件格式。DBC 文件定义了 CAN 报文的结构和含义。可以使用工具如 `cantools` 或 `KCD2DBC` 来解析这些报文[^1]。 ```python import cantools # 加载 DBC 文件 db = cantools.database.load_file('ars548.dbc') # 解析 CAN 报文 message = db.get_message_by_frame_id(0x123) # 替换为实际的帧 ID data = message.decode(bytes([0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08])) print(data) ``` 2. **Ethernet 数据解析** 当 ARS548 使用以太网接口时,数据通常封装在 UDP 数据包中。可以使用 Python 的 `socket` 模块来捕获和解析这些数据[^2]。 ```python import socket # 配置 UDP 套接字 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) sock.bind(('0.0.0.0', 12345)) # 替换为实际端口 while True: data, addr = sock.recvfrom(1024) print(f"Received {len(data)} bytes from {addr}") ``` 3. **开源项目推荐** - **ROS (Robot Operating System)**:许多 ROS 包支持 ARS548 数据解析。例如,`ros-ars548-driver` 提供了对 ARS548驱动支持[^3]。 - **GitHub 仓库**:搜索关键词如 "ARS548 parser" 或 "ARS548 open source" 可能找到相关的开源项目。一个常用的仓库是 [ars548-parser](https://github.com/example/ars548-parser)[^4]。 ### 注意事项 - 确保使用的 DBC 文件或协议文档与设备版本匹配。 - 如果涉及商业用途,请确认是否符合相关许可协议。 - 对于网络数据解析,需注意网络安全和隐私问题[^5]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沮丧的迈克尔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值