我猜你不懂矩阵分析???机器人控制、SLAM先导知识 ——(1.2)线性映射

在这里插入图片描述


1.2、线性映射

1.2.1 线性映射与线性变换

V 1 , V 2 V_1,V_2 V1V2 F \Bbb F F上的线性空间, σ : V 1 → V 2 \sigma:V_1\to V_2 σ:V1V2是映射。

  • (保加性) σ ( e 1 + e 2 ) = σ ( e 1 ) + σ ( e 2 ) \sigma(e_1+e_2)=\sigma(e_1)+\sigma(e_2) σ(e1+e2)=σ(e1)+σ(e2)
  • (保数乘性) σ ( e ⋅ k ) = σ ( e ) ⋅ k \sigma(e·k)=\sigma(e)·k σ(ek)=σ(e)k

则成 σ \sigma σ V 1 V_1 V1 V 2 V_2 V2线性映射

V 1 = V 2 = V V_1=V_2=V V1=V2=V,则称为 V V V上的 线性变换

若线性映射 σ : V 1 → V 2 \sigma:V_1 \to V_2 σ:V1V2是可逆映射(一一映射),则称作 线性同构


①线性和非线性映射的例子

非线性映射例:
[ x 1 x 2 ] ↦ [ x 1 + x 2 x 1 x 2 ] \begin{bmatrix}x_1\\x_2\end{bmatrix}\mapsto\begin{bmatrix}x_1+x_2\\x_1x_2\end{bmatrix} [x1x2][x1+x2x1x2]
原因:(线性映射是在一个空间内做加法或数乘,当映射到另一个空间时能够保持这两种性质仍成立)
[ 1 1 ] + [ 1 1 ] = [ 2 2 ] \begin{bmatrix}1\\1\end{bmatrix}+\begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}2\\2\end{bmatrix} [11]+[11]=[22]

[ 2 1 ] + [ 2 1 ] ≠ [ 4 4 ] \begin{bmatrix}2\\1\end{bmatrix}+\begin{bmatrix}2\\1\end{bmatrix}≠\begin{bmatrix}4\\4\end{bmatrix} [21]+[21]=[44]
故不是线性的。


②矩阵与标准线性空间之间的线性映射两事物的等同性

给定 A ∈ F m × n A \in \Bbb F^{m×n} AFm×n,通过右乘列向量,可决定线性映射
F n → F m \Bbb F^n \to \Bbb F^m FnFm x ↦ y = A x x\mapsto y=Ax xy=Ax

如何通过映射造出满足该映射的矩阵呢?

就是上例中,如何用 x ↦ y x \mapsto y xy 求出矩阵 A A A呢?
A ( x ) = A ( ϵ 1 x 1 ) + A ( ϵ 2 x 2 ) + ⋯ + A ( ϵ n x n ) \mathcal A(x)=\mathcal A(\epsilon_1x_1)+\mathcal A(\epsilon_2x_2)+\dots+\mathcal A(\epsilon_nx_n) A(x)=A(ϵ1x1)+A(ϵ2x2)++A(ϵnxn)这是 F n \Bbb F^n Fn的映射KaTeX parse error: Undefined control sequence: \mathcjuzhenbiaosal at position 2: =\̲m̲a̲t̲h̲c̲j̲u̲z̲h̲e̲n̲b̲i̲a̲o̲s̲a̲l̲ ̲A(\epsilon_1)·x… = [ A ( ϵ 1 ) A ( ϵ 2 ) … A ( ϵ n ) ] x =\begin{bmatrix}\mathcal A(\epsilon_1)&\mathcal A(\epsilon_2)&\dots&\mathcal A(\epsilon_n)\end{bmatrix}x =[A(ϵ1)A(ϵ2)A(ϵn)]x = A x =Ax =Ax


1.2.2 线性映射的矩阵表示

给定线性映射 A : V → W \mathcal A:V\to W A:VW d i m ( V ) = n dim(V)=n dim(V)=n d i m ( W ) = m dim(W)=m dim(W)=m
选取 V V V的基, ϵ 1 , ϵ 2 , … , ϵ n \epsilon_1,\epsilon_2,\dots,\epsilon_n ϵ1,ϵ2,,ϵn,称作入口基; W W W的基, y 1 , y 2 , … , y m y_1,y_2,\dots,y_m y1,y2,,ym,那就是出口基。

记第 j j j个入口基向量 ϵ j \epsilon_j ϵj的像 A ( ϵ j ) A(\epsilon_j) A(ϵj)出口基下的坐标为 [ a 1 j a 2 j ⋮ a m j ] \begin{bmatrix}a_{1j}\\a_{2j}\\\vdots\\a_{mj}\end{bmatrix} a1ja2jamj

A ( ϵ j ) = [ y 1 y 2 … y m ] [ a 1 j a 2 j ⋮ a m j ] \mathcal A(\epsilon_j)=\begin{bmatrix}y_1&y_2&\dots&y_m\end{bmatrix}\begin{bmatrix}a_{1j}\\a_{2j}\\\vdots\\a_{mj}\end{bmatrix} A(ϵj)=[y1y2ym]a1ja2jamj

从这里可以看出 ϵ \epsilon ϵ的第 j j j项的矩阵表示就是,整个 V → W V\to W VW矩阵表示的第 j j j列。

那么将 j j j 0 → n 0\to n 0n时就会拼成一个矩阵,这就是矩阵表示。入口基向量的项就跑到出口基空间里面去了。该矩阵的第 j j j列是第

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值