1 低序体阵列描述法
多体系统中典型体 的
阶低序体的序号定义为:
低序体算子用 表示,满足条件:
补充以下定义:
特别的,当体 和体
为两相邻低序体时,有:
任一多体系统拓扑图如下图所示,字母 表示惯性参考系并设为体
,选
的靠近体为
,然后沿
到
的方向按自然增长数列为各体从一个分支到另一个分支进行编号。下图所示的多体系统的低序体阵列通过式 (1.1) ~ (1.5) 就可以得出,如表中所示
2 相邻典型体间的运动学描述
基于多体系统理论,采用对 相邻的低序体
进行运动变换的方式就可以获得
的位姿。分别在惯性体
、典型体
和
上构建右手直角坐标体系,用
、
和
来表示,并且将惯性体
所在的坐标系设为参考坐标系,而
的位姿相对于
的位姿等价于坐标系
和
的相对位姿,且可运用其次变换矩阵进行描述。
2.1 理想状态下相邻典型体间的运动学描述
(1)齐次线性变换
设有序数组 与之相对应有序数组
满足以下的关系式:
把有序数组
转换为
的一次齐次线性变换(简称齐次变化)。在
变换中将有序数组
称为
的像,
则称为
的原像,齐次变换矩阵式如下:
若有序数组 表示
空间坐标系中的 1 个任意位置坐标,而有序数组
表示
空间坐标系中与之对应的 1 个位置坐标,则称
是把
坐标系下的位置坐标
转换到
坐标系下的位置坐标
的一个齐次变换。
(2)三维齐次坐标变换
如下图所示,设 点在原坐标系
中的坐标点为
,当坐标系
沿
方向移动距离
到新坐标系
后,则
点在新坐标系
中坐标值
与在原坐标系
中坐标值
的关系为:
上式中 表示沿
轴平移的平移矩阵。
同理沿 ,
轴平移变换矩阵为:
如下图所示,设 点在原坐标系
中的坐标点为
,当坐标系
绕
方向旋转角度
至新坐标系
后,则
点在新坐标系中的点
与在原坐标系
中的坐标点
的关系为:
同理绕 ,
轴旋转变换矩阵为:
当坐标系 分别沿
,
和
轴平移
,
,
后,再绕
,
和
轴分别旋转
、
、
角度,则坐标系
中的
点
转换到新坐标系
的齐次变换矩阵为: