论文笔记——基于多传感器融合的紧耦合SLAM系统

本文介绍了一种结合视觉、激光雷达及IMU的紧耦合SLAM系统,通过非线性优化滑动窗口状态估计方案,实现了高效的空间定位与地图构建。系统采用改进的特征提取方法增强点云空间约束,并通过联合优化方案融合多种传感器数据,同时设计了视觉-激光雷达耦合的回环检测框架,有效减少了长时间运行下的累计误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

思路:基于视觉、激光雷达、IMU紧耦合的SLAM系统,实现了一个基于非线性优化的滑动窗口的状态估计方案。

创新点:

(1)采用加强平面特征点空间约束的特征提取方案对点云进行特征提取,在降低点云总数的同时提升可用于恢复视觉特征点深度信息的点云占比,进一步提升系统的实时性。

(2)采用将激光雷达里程计直接作为帧间相对约束添加到视觉惯性框架中的联合优化方案,将3种约束构建在一个非线性方程中进行联合优化,减少系统的复杂程度。

(3)设计了高频视觉回环加低频激光回环组成的视觉-激光雷达耦合的回环检测框架,可以在降低系统资源消耗的情况下实现由粗到精的回环检测与位姿匹配,进一步减少系统在大场景下长时间工作导致的累计误差。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值