多传感器融合SLAM --- 1.多传感器融合的基础知识

本文介绍了多传感器融合在SLAM中的应用,重点讨论了相机、激光雷达、GPS等传感器的优缺点,以及基于激光的LOAM算法。还提到了自动驾驶中为何常选用激光雷达,并概述了主流的融合算法方案,如A-LOAM和LeGO-LOAM。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1 什么是多传感器融合

1.1 有哪些传感器

1.2 它们的优缺点有哪些

1.3 基于多传感器融合的算法

2 多传感器融合方案介绍

2.1 为什么选用激光雷达

2.2 主流算法介绍 : LOAM (A-LOAM) 、LeGO-LOAM、

3 KITTI数据集介绍


1 什么是多传感器融合

1.1 有哪些传感器

        跟slam相关的传感器有 相机,激光雷达,GPS,轮速里程记,惯性测量单元(IMU)等,这些传感器基本上是自动驾驶车辆必备的传感器。

1.2 它们的优缺点有哪些

        相机:优点是便宜,轻量,包含信息丰富,可以参照人眼,人工智能的巅峰估计就是只利用相机可以在任何场景下实现实时建图、定位、图像分割、目标检测和分类、导航、避障等等高级功能,缺点就是现有的通用的视觉slam技术依赖图像的纹理来进行特征点的提取,没有纹理或者黑夜图像就很难被很好的利用起来,其次,图像中缺乏3d信息,通常建模slam问题需要同时优化位姿和地图点,这给优化问题的计算和精度带来了挑战。另一方面,单目图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

APS2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值