生信分析——聚类分析

概念:将物理或者抽象的对象的集合分成有类似的对象组成的多个类或者多个簇的过程被称为聚类。

实现过程:

1.进行数据预处理(在生信中聚类分析的预处理是使用PCA进行主成分分析)

2.进行数据的标准化

主要的聚类算法都包括:

1.基于划分的的聚类方法(这主要就是生信聚类分析的主要算法):对给定的包含n个样本的数据集,可以将数据划分为k个组,即构成数据的k个划分(与k-means关系?),每个划分表示一个聚簇。

要求:(1)每个组至少包括一个对象(2)每个对象必须且仅属于一个组

2.基于层次的聚类方法:可以将数据对象组成一颗聚类的树,根据构建树的方向(自上向下,还是自下向上可以分为凝聚的还是分裂的层次聚类)

(1)凝聚的层次聚类:按照自底向上的策略将每个对象作为单独的一个簇,然后将这些原子簇合并变成更大的簇,直到所有的对象都在一个簇中或者因为某个条件而进行终止。

(2)分裂的层次聚类:与凝聚的层次聚类相反,按照蹭上倒下的策略,先将所有的对象都放到一个簇中,然后逐渐细分为晓得簇,直到每个对象都在一个簇中,或者达到一个终止条件进行终止

3.基于密度的聚类方法:按照对象之间的距离进行聚类的(如单细胞测序分析中,可以根据每个细胞在组织中所处的位置进行聚类),这样的方法只能发现球状的簇,因为基于密度的聚类方法是将簇看做是数据空间中被低密度区域分割开的高密度区域

4.基于网格的聚类方法:是把对象空间量化为有限数目的单元,形成一个网格结构,所有的聚类操作都在这个网格结构上进行

优点:处理速度快而且处理的时间独立于数据对象的数目,只与量化空间中的每一维的单元数目相关

5.视觉聚类方法:是基于尺度空间理论进行的,将数据集看做图像,将数据建模问题看做认知问题通过格式塔原理与生物视觉原理解决问题(人脸识别是怎么运行的?我看了一个算法大牛的一篇文章是这么说的,人脸识别最初的或者是最简单的就是将人的脸扫描下来,分成无数个小格子,然后记住这些小格子的特征,然后当人进行时别的时候,可以直接将小格子里的内容与人脸进行比对,也就是说这可能与视觉聚类方法和基于网格的聚类方法有关)

6.基于模型的聚类方法:数据是根据潜在的概率分布生成的,也就是说为每一个簇假定一个模型寻找数据对给定魔性的最佳拟合(神经网络聚类算法就食欲基于模型的聚类方法)

我所做的所有分析与教程的代码都会在我的个人公众号中,请打开微信搜索“生信学徒”进行关注,欢迎生信的研究人员和同学前来讨论分析。
ps:公众号刚刚建立比较简陋,但是该有的内容都不会少。

<think>好的,用户想了解生物信息学中的聚类方法和工具。首先,我需要回忆相关的知识,并结合提供的引用内容来组织答案。 首先,用户提到的引用[1]介绍了K-means和层次聚类,以及它们在基因序列分类、蛋白质性质分析等方面的应用。引用[2]补充了聚类分析的基本概念,而引用[3]则提到了谱聚类和实际代码工具如scikit-learn。这些息应该作为回答的基础。 接下来,我需要明确生物信息学中常用的聚类方法有哪些。根据引用内容,K-means、层次聚类和谱聚类是主要的。需要分别解释每种方法的原理、适用场景,并举例说明在生物信息学中的具体应用,比如基因表达分析或系统发育树构建。 然后,关于工具部分,引用[3]提到了Python的scikit-learn库,而引用[1]和[2]可能涉及到其他工具如R语言中的相关包或SPSS。需要列举常用的软件和工具,比如Cluster 3.0、MEGA等,并说明它们的应用领域,如处理基因数据或系统发育分析。 此外,用户可能对如何选择合适的方法或工具存在疑问,因此需要给出选择建议,比如数据规模、是否需要可视化等。同时,应用场景部分可以更详细地展开,例如在疾病分型中的应用,引用[1]中的功能基因识别可以作为例子。 最后,按照用户要求成相关问题,需要围绕方法、工具、应用和比较展开,确保问题具有针对性,能够帮助用户进一步探索。 检查是否所有数学公式都正确使用$...$或$$...$$格式,比如算法中的距离公式或目标函数。例如,K-means的目标函数是$\sum_{i=1}^k \sum_{x \in C_i} ||x - \mu_i||^2$,需要正确使用行内公式格式。同时,确保引用标识正确添加,如[^1]、[^2]的位置自然。 总结回答结构:先概述聚类分析的重要性,再分方法、工具、应用场景和选择建议,最后相关问题。确保每个部分都有引用支持,并且语言流畅,符合中文表达习惯。</think>在生物信息学中,聚类分析是一种关键的无监督学习方法,用于探索数据内在结构。以下是常用方法及工具的详细说明: --- ### 一、主要聚类方法 1. **K-means聚类** - **原理**:将数据划分为$k$个簇,最小化目标函数$\sum_{i=1}^k \sum_{x \in C_i} ||x - \mu_i||^2$($\mu_i$为簇中心)[^1]。 - **应用**:基因表达谱分析、蛋白质功能分类。例如,通过基因表达量差异对癌症亚型分组。 - **局限性**:需预设簇数量$k$,对噪声敏感。 2. **层次聚类(Hierarchical Clustering)** - **原理**:通过距离矩阵构建树状结构(树状图),支持自底向上(凝聚)或自顶向下(分裂)策略。常用距离度量包括欧氏距离或相关系数[^1]。 - **应用**:构建系统发育树、样本分类。例如,根据基因序列相似性推断物种进化关系。 3. **谱聚类(Spectral Clustering)** - **原理**:基于图论,利用数据相似性矩阵的特征向量进行降维后聚类,适合非凸分布数据[^3]。 - **代码示例**(引用[^3]中的Python实现): ```python sc = SpectralClustering(n_clusters=4, affinity='nearest_neighbors') labels = sc.fit_predict(x) ``` --- ### 二、常用工具与软件 | 工具名称 | 语言/平台 | 特点 | |----------------|---------------|----------------------------------------------------------------------| | **Cluster 3.0** | 独立软件 | 专为基因表达数据分析设计,支持层次聚类和K-means,提供可视化树状图[^1]。 | | **MEGA** | 图形化界面 | 用于系统发育分析,整合多种距离算法和层次聚类方法[^1]。 | | **scikit-learn**| Python库 | 支持K-means、谱聚类算法,灵活集成物数据处理流程。 | | **SPSS** | 统计分析软件 | 提供探索性聚类分析,适合临床数据或小规模物数据集。 | --- ### 三、应用场景 1. **基因功能注释** 通过共表达基因聚类推测未知基因功能,例如将高表达同步性基因归为同一功能模块。 2. **疾病亚型划分** 利用患者转录组数据聚类,识别不同预后特征的癌症亚型。 3. **进化分析** 基于序列相似性的层次聚类构建系统发育树,推断物种亲缘关系。 --- ### 四、方法选择建议 - **数据规模**:K-means适合大规模数据(时间复杂度$O(nk)$);层次聚类适用于中小规模($O(n^3)$)。 - **分布类型**:谱聚类处理复杂分布更优,K-means假设球形簇[^3]。 - **可视化需求**:层次聚类的树状图可直接展示分类关系。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值