无人机影像配准并发布(共线方程)

无人机影像 + DEM 计算四个角点坐标(刚性变换)

  1. 像空间坐标(x,y,-f)

  2. 像空间坐标畸变纠正 deltax,deltay
    在这里插入图片描述

  3. 已知(x,y),求解(X,Y, Z)或者(Lat,Lon)
    在这里插入图片描述
    这里的Z是DEM上获取的坐标和Zs为相机坐标的高程,如果均为已知的情况下,则可以求解(X,Y),这里的(X,Y,Z)为地固地心坐标,单位为米。平地的情况只需要获取行高即可求解(X,Y),接着使用proj库将地固地心坐标转化为经纬度坐标即可。

  4. 地理配准
    这里直接采用**gdal_translategdal_wrap**,gdal_translate转换过程如下,大概就是将jpg进行地理配准。请注意,GDAL的影像起点是左上角,但是我们的相机模型是左下角,所以需要变换Y轴。转换之后的tif只有专业的QGIS之类的软件才能读取。
    在这里插入图片描述

    下面是QGIS读取的效果。但是为了geoserver能够识别,还需要转换,这时候需要gdal_wrap,这个时候就很关键,我们需要设置其为透明。

    gdalwarp -r cubic -ovr AUTO -dstalpha D:\code\roadProj\public\demo\DSC00002\test.tif D:\code\roadProj\public\demo\DSC00002\test3_geotiff.tif
    

    在这里插入图片描述

    gdal_translate.exe -of GTiff -gcp 0 5304 102.1265090139 29.6453703982 -gcp 7952 5304 102.1164515460 29.6474820822 -gcp 7952 0 102.1131839750 29.6445496193 -gcp 0 0 102.1233217949 29.6424804051 -ovr AUTO -co GCPs_Creation=YES D:\code\roadProj\public\demo\DSC00002\DSC00002.jpg D:\code\roadProj\public\demo\DSC00002\test.tif
    
    1. geoserver发布,具体操作比较简单

代码逻辑

  1. 下面是求解影像四个角点经纬度的简单思路,主要还是共线方程,代码中的1000还是得根据距离地面的高度,即需要DEM的高程值才能求解得到较为精确的精度。

  2. 具体实现分为相机模型(固定的参数不部分),大疆无人机是WGS84椭球,EPSG:4978是地心地固的转换参数。

struct CameraModel {
    double f = 7538.508;  // 像素为单位

    double u0 = 3982.417; // 像素为单位
    double v0 = 2671.637;

    double pixelSize = 4.5e-6; // 米为单位

    double k1 = 2.470920e-9;   // 径向畸变系数
    double k2 = -2.767172e-16;
    double k3 = 2.479935e-23;
    double k4 = -6.583598e-31;

    double p1 = 1.388595e-8; // 偏心畸变系数
    double p2 = 1.781812e-7;

    double alpha = -4.697031e-4; // CCD非正方形比例系数
    double beta = -1.300023e-4;

    double width = 7952; // 影像的高度和宽度
    double height = 5304;
};```

```cpp
///
/// \brief The ComputeBoundingBox class
/// 计算影像的包围盒的经纬度坐标 + 高程,然后贴地
///
class ComputeBoundingBox {
public:
    ComputeBoundingBox() {
        transTool.init("EPSG:4326",
                       "EPSG:4978"); // 椭球坐标->地心坐标 XYZ
    }

    ///
    /// \brief resetR
    /// \param phi 俯仰角
    /// \param omega 横滚角
    /// \param kappa 旋转角
    ///
    void resetR(double phi, double omega, double kappa) {
        this->phi = degreeToRadian(phi);
        this->omega = degreeToRadian(omega);
        this->kappa = degreeToRadian(kappa);
    }

    ///
    /// \brief resetCamera
    /// \param lat 维度
    /// \param lon 经度
    /// \param height 高程
    ///
    void resetCamera(const QString &imgNumber, double lat, double lon, double height) {
        this->imgNumber = imgNumber;
        this->cameraLat = lat;
        this->cameraLon = lon;
        this->height = height;
    }

    ///
    /// \brief compute 计算相机位置 + 旋转矩阵
    ///
    void compute();

private:
    ///
    /// \brief computeLatlon 根据像点坐标计算经纬度坐标(共线方程的逻辑)
    /// @param vector2d uv x轴,y轴坐标
    ///
    Eigen::Vector2d computeLatlon(Eigen::Vector2d &uv);

    ///
    /// \brief degreeToRadian 度转弧度
    /// \param degree
    /// \return
    ///
    double degreeToRadian(double degree) { return degree * M_PI / 180.0; }

    //    double computeDeltaX();

    //    double computeDeltaY();

    Eigen::Vector3d cameraGeo;

    Eigen::Matrix3d rMatrix;

    Transform transTool;

    CameraModel intrinsic; // 内参数矩阵

    QString imgNumber;     // 影像编号

    double cameraLat;      // 相机外参数矩阵
    double cameraLon;
    double height;

    double phi;
    double omega;
    double kappa;
};
Eigen::Vector2d ComputeBoundingBox::computeLatlon(Eigen::Vector2d &uv) {
    double u = uv.x();
    double v = uv.y();
    Eigen::Vector3d cameraSpace(u, v, -this->intrinsic.f); // 像空间坐标

    double r = qSqrt(pow(u - this->intrinsic.u0, 2) + pow(v - this->intrinsic.v0, 2));

    // (x-x0) * (k1*r^2 + k2*r^4 + k3*r^6 + k4*r8) + p1*(r^2 + 2*(x-x)^2) + 2p2*(x-x0)(y-y0) + alpha*(x-x0) +
    // beta*(y-y0)
    double deltaX = (u - this->intrinsic.u0) * (this->intrinsic.k1 * pow(r, 2) + this->intrinsic.k2 * pow(r, 4) +
                                                this->intrinsic.k3 * pow(r, 6) + this->intrinsic.k4 * pow(r, 8)) +
                    this->intrinsic.p1 * (pow(r, 2) + 2 * pow((u - this->intrinsic.u0), 2)) +
                    2 * this->intrinsic.p2 * (u - this->intrinsic.u0) * (v - this->intrinsic.v0) +
                    this->intrinsic.alpha * (u - this->intrinsic.u0) + this->intrinsic.beta * (v - this->intrinsic.v0);
    double deltaY = (v - this->intrinsic.v0) * (this->intrinsic.k1 * pow(r, 2) + this->intrinsic.k2 * pow(r, 4) +
                                                this->intrinsic.k3 * pow(r, 6) + this->intrinsic.k4 * pow(r, 8)) +
                    this->intrinsic.p2 * (pow(r, 2) + 2 * pow((v - this->intrinsic.v0), 2)) +
                    2 * this->intrinsic.p1 * (u - this->intrinsic.u0) * (v - this->intrinsic.v0);

    Eigen::Vector3d cameraOffset(deltaX - this->intrinsic.u0, deltaY - this->intrinsic.v0,
                                 0);                              // 像点坐标偏移
    Eigen::Vector3d cameraSpaceTrue = cameraSpace + cameraOffset; // 实际的像点坐标[最后一位该如何求解]

    Eigen::Vector3d worldCoordBa =
        this->rMatrix * cameraSpaceTrue * this->intrinsic.pixelSize; // (xBa, yBa, zBa) pixelSize这个参数多余

    worldCoordBa =
        Eigen::Vector3d(worldCoordBa.x() / worldCoordBa.z() * 1000, worldCoordBa.y() / worldCoordBa.z() * 1000, 0);

    //    qDebug() << worldCoordBa.x() << " " << worldCoordBa.y() << " " << worldCoordBa.z();

    Eigen::Vector3d worldCoord = worldCoordBa + this->cameraGeo; // 真正的坐标
    //    std::cout << worldCoord.x() << " " << worldCoord.y() << " " << worldCoord.z();

    //    PJ_COORD latlonh = proj_coord(cameraLon, cameraLat, height, 0);
    PJ_COORD geoxyz = proj_coord(worldCoord.x(), worldCoord.y(), worldCoord.z(), 0); // 地心坐标
    PJ_COORD latlon = this->transTool.backward(geoxyz);
    //    std::cout << "lat:" << latlon.lpz.lam << " ,lon:" << latlon.lpz.phi << ", " << latlon.lpz.z;
    return Eigen::Vector2d(latlon.lp.phi, latlon.lp.lam); // lat and lon
}
void ComputeBoundingBox::compute() {

    PJ_COORD latlonh = proj_coord(cameraLon, cameraLat, height, 0);
    PJ_COORD geoxyz = transTool.forward(latlonh);

    this->cameraGeo = Eigen::Vector3d(geoxyz.xyz.x, geoxyz.xyz.y, geoxyz.xyz.z); // 地心坐标

    // 计算绕X轴旋转的旋转矩阵 Rx(φ)
    Eigen::Matrix3d Rx;
    Rx << 1, 0, 0, 0, std::cos(phi), -std::sin(phi), 0, std::sin(phi), std::cos(phi);

    // 计算绕Y轴旋转的旋转矩阵 Ry(ω)
    Eigen::Matrix3d Ry;
    Ry << std::cos(omega), 0, std::sin(omega), 0, 1, 0, -std::sin(omega), 0, std::cos(omega);

    // 计算绕Z轴旋转的旋转矩阵 Rz(κ)
    Eigen::Matrix3d Rz;
    Rz << std::cos(kappa), -std::sin(kappa), 0, std::sin(kappa), std::cos(kappa), 0, 0, 0, 1;

    // 计算总的旋转矩阵 R_total = Rz(κ) * Ry(ω) * Rx(φ)
    this->rMatrix = Rz * Ry * Rx;

    // 像素点畸变纠正

    Eigen::Vector2d lb(0, 0);                                          // 左下角为起点
    Eigen::Vector2d rb(this->intrinsic.width, 0);                      // 右下角坐标
    Eigen::Vector2d rt(this->intrinsic.width, this->intrinsic.height); // 右上角坐标
    Eigen::Vector2d lt(0, this->intrinsic.height);                     // 左上角成果

    std::vector<Eigen::Vector2d> latlonVec = {lb, rb, rt, lt};
    qDebug() << "####################" << this->imgNumber << "########################";
    for (Eigen::Vector2d &pixelCoord : latlonVec) {
        pixelCoord = this->computeLatlon(pixelCoord);
        qDebug() << "lat: " << QString::number(pixelCoord.x(), 'f', 10)
                 << ",lon:" << QString::number(pixelCoord.y(), 'f', 10);
    }
}

效果图

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值