YOLOv10解析:保姆级解读和使用教程

前言🌟🌟

YOLOv10是清华大学的Ao Wang, HuiChen, LihaoLiu等人于 2024年5月发布的,是一种新的实时端到端目标检测器,也是YOLO系列最新的算法。

YOLOv10介绍🌟🌟

论文地址:YOLOv10: Real-Time End-to-End Object Detection
源码链接:code

 

一、创新点🌱🌱

1. 无NMS的一致双分配的训练策略(consistent dual assignments for NMS-free Training):

1.1 双标签分配(Dual label assignments):

一对一分配(one-to-one matching):仅一个预测框被分配给一个真实物体标签,避免了NMS,但是会导致弱监督,使得模型精度欠佳和影响收敛速度。
一对多分配(one-to-many matching):能解决一对一分配策略存在的问题,在训练期间,多个预测框被分配给一个真实物体标签。这种策略提供了丰富的监督信号,优化效果更好。
双头架构:模型在训练期间使用两个预测头,一个使用一对多分配,另一个使用一对一分配。这样,模型可以在训练期间利用一对多分配的丰富监督信号,而在推理期间则使用一对一分配的预测结果,从而实现无NMS的高效推理。
1.2 一致匹配度量(Consistent matching metric):

 

为实现两个分支的预测感知匹配,作者提出了一致匹配度量。通过调整匹配度量参数,使得一对一和一对多分配的监督信号一致,减少了训练期间的监督差距,提升了模型的预测质量。

2. 效率-精度驱动的模型设计(Holistic Efficiency-Accuracy Driven Model Design) 

 

2.1. 效率驱动的模型设计:

轻量化分类头:通过分析分类误差和回归误差的影响后,发现回归头对YOLOs的性能影响更大,在不显著影响性能的情况下,可以适当减少分类头计算开销。
空间-通道解耦下采样:将空间缩减和通道增加操作解耦,实现更高效的下采样。最大限度地提高了下采样过程中的信息保留率,从而降低了延迟,带来了具有竞争力的性能。
基于秩的块设计:根据各阶段的内在秩适应块设计,降低冗余,提高效率。提出了一种紧凑的反向块(CIB)结构;设计了一种秩引导的块分配策略,以在保持竞争力的同时实现最佳效率。
2.2 精度驱动模型设计:

大核卷积:采用大核深度卷积可有效扩大感受野和增强模型能力,作者在深度阶段利用了CIB中的大核深度卷积。(只对小尺度模型采用大核卷积。)
部分自注意力PSA:解决自注意在视觉任务中出现很高的计算复杂度和内存占用的问题。

 

二、模型性能对比🌱🌱

相关模型比较:

 

 

四、v8、v10.yaml文件对比🌱🌱

1. 参数部分:
新增尺寸为b的模型

2. 主干部分
引入改进模块SCdown和C2fCIB,网络第10层新增PSA模块。
C2fCIB:将C2f中的Bottleneck模块换成CIB模块而得。 3. Neck部分
Neck:引入新模块SCdown和C2fCIB

 4. Head部分
YOLOV10:
Heda:One-to-one Head 和One-to-many Head并行部署

 

YOLOv5(You Only Look Once version 5)是一个流行的开源目标检测算法,基于PyTorch库实现,用于实时和高效地定位图像中的物体。以下是一个简单的YOLov5安装的保姆教程: **步骤1:环境准备** - 安装Python:确保已安装Python 3.6或更高版本。 - 安装依赖:使用pip安装必要的库,如torch, torchvision, fastai等。运行以下命令: ``` pip install torch torchvision fastai ``` **步骤2:安装YOLov5** - 访问YOLov5的GitHub仓库:https://github.com/ultralytics/yolov5 - 在命令行中,导航到你想下载代码的目录并克隆仓库: ``` git clone https://github.com/ultralytics/yolov5.git cd yolov5 ``` - 初始化项目并安装所需的额外依赖(如CUDA和CUDNN): ``` git submodule update --init --recursive pip install -r requirements.txt ``` **步骤3:设置CUDA(如果有GPU)** - 如果你的系统有NVIDIA GPU,需要安装CUDA和cuDNN。请根据你的系统文档进行配置。 - 确保在环境变量中添加了CUDA和cuDNN的路径。 **步骤4:开始训练或使用预训练模型** - 对于训练,执行`python train.py`,按照提示选择数据集、模型配置等选项。 - 对于预测,你可以使用`python detect.py`,提供一张图片或一个视频作为输入。 **注意事项:** - YOLOv5支持多种预训练权重,可以根据需求选择合适的模型(例如 yolov5s, yolov5m, yolov5l 或 yolov5x)。 - 根据你的硬件配置,训练过程可能需要一定时间,尤其是对于大型数据集和复杂模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈子迩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值