Open3D 点云的半径滤波

目录

一、概述

二、代码实现

2.1实现流程

2.2 主要函数

2.3代码

三、实现效果

3.1原始点云

3.2滤波后点云

3.3数据对比


 Open3D点云算法汇总及实战案例汇总的目录地址:

Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客


一、概述

        半径滤波(Radius Outlier Removal)是一种常用的点云滤波技术,通过移除与其邻居点距离过远的点,来去除孤立的噪声点。在Open3D中,可以方便地使用radius_outlier_removal函数来进行半径滤波。

        半径滤波的基本原理是

  • 对于每个点,计算其在指定半径范围内的邻居点数量。
  • 如果某个点的邻居点数量少于一个预设的阈值,则认为该点是噪声点,并将其移除。
### Open3D点云滤波的方法和实现教程 #### 一、直通滤波 (Pass-through Filtering) 直通滤波是一种简单的过滤方法,可以基于特定维度(如 X, Y 或 Z 轴)的范围来筛选点云中的点。这有助于去除不需要的部分,从而简化后续处理。 ```python import open3d as o3d # 加载点云数据 pcd = o3d.io.read_point_cloud("input.ply") # 定义直通滤波参数 min_bound = [-10, -10, -10] max_bound = [10, 10, 10] # 应用直通滤波 inlier_cloud = pcd.select_by_index( pcd.get_axis_aligned_bounding_box(min_bound, max_bound).get_point_indices_within_bounds() ) o3d.visualization.draw_geometries([inlier_cloud]) ``` 此代码片段展示了如何使用 `select_by_index` 和 `get_axis_aligned_bounding_box` 函数来进行直通滤波[^1]。 #### 二、体素下采样 (Voxel Downsampling) 体素下采样通过将三维空间划分为固定大小的小立方体(即体素),并将每个体素内的所有点替换为平均位置或中心点,以此减少点的数量并平滑表面。 ```python voxel_size = 0.05 downsampled_pcd = pcd.voxel_down_sample(voxel_size=voxel_size) o3d.visualization.draw_geometries([downsampled_pcd]) ``` 这段代码实现了基本的体素下采样操作,其中 `voxel_size` 参数控制着最终模型的分辨率[^2]。 #### 三、均匀下采样 (Uniform Downsampling) 均匀下采样按照固定的间隔选取点云中的点,适用于快速降低点数而不改变整体形状的情况。 ```python uniform_downsampled_pcd = pcd.uniform_down_sample(every_k_points=5) o3d.visualization.draw_geometries([uniform_downsampled_pcd]) ``` 这里设置每五个点取一个作为新的样本点。 #### 四、统计滤波 (Statistical Outlier Removal) 统计滤波依据局部密度分布移除离群点,对于保持物体轮廓非常有用。 ```python cl, ind = downsampled_pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0) statistical_filtered_pcd = downsampled_pcd.select_by_index(ind) o3d.visualization.draw_geometries([statistical_filtered_pcd]) ``` 上述例子中设置了邻域内邻居数目 (`nb_neighbors`) 及标准差倍率 (`std_ratio`) 来定义正常点的标准。 #### 五、半径滤波 (Radius Outlier Removal) 半径滤波根据指定球形区域内存在的最少有效点数量决定哪些点应该被保留下来。 ```python cl, ind = downsampled_pcd.remove_radius_outlier(nb_points=16, radius=0.05) radius_filtered_pcd = downsampled_pcd.select_by_index(ind) o3d.visualization.draw_geometries([radius_filtered_pcd]) ``` 在这段代码里指定了最小邻近点数 (`nb_points`) 和搜索半径 (`radius`) 来执行滤波过程[^5]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MelaCandy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值