SRAM 学习(1)

文章探讨了深度神经网络计算需求与冯诺依曼架构的瓶颈,引出存算一体(CIM)的概念。CIM利用SRAM阵列进行计算,支持布尔运算和乘加运算,关注运算精度、算力和能耗效率。SRAM的读写操作与驱动能力(如扇出)是关键,其中NMOS通常比PMOS具有更好的驱动能力和响应速度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SRAM 学习仿真

明确需要,CIM(Computing In Memory)需要什么样子的SRAM先阅读相关材料,然后再决定自己的SRAM需要做到什么性能才比较好。)*
  • 深度神经网络和冯诺依曼架构中的瓶颈

    深度神经网络需要大量的乘加计算(MAC)。这就意味着大量的数据的搬移和读写,冯诺依曼结构不方便完成,因为在这种传统的结构中,在进行MAC计算前,需要先从储存器中读取大量的输入和权重数据,然后在送到对应的process element(PE)中进行计算,得到的中间值还需要用储存器和中间计算器储存起来做后续的计算,。在这种设计中吗,储存器进行读写所需要消耗的能量远大于计算单元进行计算的能量。

  • 存算一体架构和存内计算电路

在这里插入图片描述
%;" />

  • 存储模式:

    一次只有一条WL被开启,从而对于SRAM单元进行一般的写入和读取的操作。就是和之前学习的SRAM的cell是一样的。

  • 计算模式:

    在这种模式中,多组输入数据会经由多条WL(或者BL)送到SRAM阵列,与之对应的多组SRAM单元会被开启,开启的每个SRAM单元会执行乘法的操作。通过BL的连接,可以在BL上得到乘加的加过,经由跟BL对应的模数量化电路就可以得到相应的计算结果。

  • 两个重要指标:

    1.所支持的运算类型和运算精度。其中主要包括的运算类型包括:布尔计算,单比特乘加,以及多比特 乘加;

    2.算力 [Throughput](即每秒所能执行的运算次数);

    3.能耗效率 [Energy Efficiency](即单位时间内所能进行的计算次数跟功耗的比值。

  • SRAM的基本的read and write和概念

    这一部分可以参考另一篇的介绍。其中有一个概念是驱动能力。

    这也是在下面的文章中所说 ,

    在执行写操作的过程中,Q的值会由PUL和PGL相互之间的强弱决定,而QB的值则有PGR和PDR相互之间的强弱而决定。一般地,由于PMOS的驱动能力比NMOS弱,因我是此节点Q所存储的值容易从逻辑1反转为逻辑0。

    在这里的驱动能力一般用“扇出”表示,意思就是单个逻辑门能够驱动(后面级联)的数字信号输入的最大个数。例如一个CMOS反相器(后面简称inv)的输出端最多能给其他5个逻辑门提供输入而没有失真,那么它的扇出就是5。

    具体可以看为什么集成电路中反相器可以增大驱动能力

    相关的还有一个问题可以看这里:[为什么NMOS比PMOS性能高]((2 封私信 / 81 条消息) 为什么NMOS比PMOS性能高? - 知乎 (zhihu.com))。

    MOS的载流子只有一种,电子或者空穴。在偏压下会形成反型层作为导电沟道,即载流子的迁移路径。NMOS是N型沟道,载流子是电子,PMOS是P型沟道,载流子是空穴。

    管子的功能发挥或者特性研究,主要是研究载流子的迁移。一般而言,电子迁移速率是空穴迁移速率的五到十倍,根据材料和结构已经外特性的不同,这个倍数甚至更高。

    而载流子的迁移速率又直接影响到器件特性,所以,NMOS结构比PMOS结构的响应更好,更直接的,响应速度更快。

在这里插入图片描述

对于PGL来说Vds的值 .x2

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值