垂类大模型 研发方向与具体方案调研

本文探讨了垂类大模型的研发方向,包括从零开始训练、二次预训练、基础大模型微调、通用模型+向量知识库和Incontextlearning等策略。重点介绍了研发背景、资源消耗和实际实现流程,指出以基础微调和向量知识库为核心的常见技术解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

垂类大模型 研发方向与具体方案调研

一、研发方向调研初步汇总

初步选定垂类大模型研发技术栈如下:

主要训练策略:通用大模型+向量知识库:领域知识库加上通用大模型,针对通用大模型见过的知识比较少的问题,利用向量数据库等方式根据问题在领域知识库中找到相关内容,再利用通用大模型强大的summarization和qa的能力生成回复,完成本次垂直大模型研发。

涉及方向确立的主要参考资料:
1、CLiB中文大模型能力评测榜单(持续更新)
2、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风吹落叶花飘荡

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值