Seurat的subset,数据提取方法 提取子集 按条件要求

这篇博客详细介绍了如何使用 Seurat 库在单细胞RNA测序数据中进行子集选择,包括按细胞类型、特征数量、主成分等条件筛选,并展示了如何提取表达矩阵、PCA嵌入和元数据。同时,还提供了数据转换和保存表达矩阵到CSV文件的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Seurat的subset,数据提取方法
Idents(scRNA) <- scRNA$Majory_type
subset(x = scRNA, idents = c("CD4 T cells", "CD8 T cells"))
subset(x = scRNA, subset = nFeatures > 500 & PC1 > 5, idents = "B cells")
subset(x = scRNA, subset = orig.ident == "Replicate1")
subset(x = scRNA, downsample = 100)
subset(x = scRNA, features = VariableFeatures(object = scRNA))
scRNA= scRNA[,scRNA@meta.data$seurat_clusters %in% c(0,2)]
scRNA= scRNA[, Idents(scRNA) %in% c( "T cell" ,  "B cell" )] 


矩阵提取
#assay数据提取
GetAssayData( scRNA, slot = "counts")
scRNA<- SetAssayData(scRNA, slot = "scale.data", new.data = new.data)
#embeddings 数据提取
Embeddings(object = scRNA, reduction = "pca")
# FetchData can pull anything from expression matrices, cell embeddings, or metadata
FetchData(object = scRNA, vars = c("PC_1", "percent.mito"))
exprs <- data.frame(FetchData(object = scRNA, vars =  VariableFeatures(object = scRNA)))
exprs <- t(exprs)  #行列变换
write.csv(exprs,file = 'exprs.csv')

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值