【4】比例风险(PH)假定检验:比例风险假定是Cox回归的前提条件,可以通过计算检验,也可以通过图示法。

【4】比例风险(PH)假定检验:比例风险假定是Cox回归的前提条件,可以通过计算检验,也可以通过图示法。

4.1计算检验命令:整体检验estat phtest;单独检验每个协变量estat phtest, detail

菜单可通过以下途径进入

①统计>>生存分析>>回归模型>>比例风险假设检验;

②图形>>生存分析图>>stcox后比例风险假设检验;

③统计>>后验估计,在打开的[后验估计选择器]中选择[比例风险假定的检验];

点击[开始]进入对话框[estat-后验估计统计量],选择[基于Schoenfeld残差的比例风险假设检验(phtest)]。如想进一步检验每个协变量的比例风险假定,可在继续点击对话框[estat-后验估计统计量]中的[选项]按钮,在打开的对话框中选择复选框[单独检验每个协变量的比例风险假设]。

结果显示P>0.05,满足比例风险假设。
在这里插入图片描述
4.2 图示法可以通过生存函数的双对数图(Log-log plot of survival)与Kaplan–Meier与Cox预测的生存曲线图(Kaplan–Meier and predicted survival plot)

stphplot plots sln{−ln(survival)} curves for each category of a
nominal or ordinal covariate versus ln(analysis time). These are often
referred to as “log-log” plots. Optionally, these estimates can be
adjusted for covariates. The proportional-hazards assumption is not
violated when the curves are parallel.

stcoxkm plots Kaplan–Meier observed survival curves and compares them
with the Cox predicted curves for the same variable. The closer the
observed values are to the predicted, the less likely it is that the
proportional-hazards assumption has been violated.

4.2.1 Log-log plot of survival可以拟合命令单独或者分层的Cox模型,并可根据调整变量进行调整。

命令1:stphplot, by(recur)

根据分类变量recur拟合单独的Cox模型,结果是下图左;

命令2:stphplot, strata(recur) adjust(age) zero

根据分类变量recur拟合分层的Cox模型,并根据变量age进行调整,调增方法是将age值调整为0(默认是均值),结果为下图右。

菜单可通过以下途径进入stphplot-生存函数的双对数图(Log-log plot of survival)

①统计>>生存分析>>回归模型>>比例风险假设的图形评估;

②图形>>生存分析图>>比例风险假设检验;

选入相应的自变量和分层变量即可。

> 结果显示变量recur两个水平基本“平行”,满足比例风险的假定。

在这里插入图片描述
4.2.2 Kaplan–Meier and predicted survival plot命令:stcoxkm, by(recur)

当然你可以单独绘制recur两个水平的观测预测曲线:stcoxkm, by(recur) separate

菜单操作:

①统计>>生存分析>>回归模型>>Kaplan–Meier生存曲线和Cox预测曲线比较;

②图形>>生存分析图>>Kaplan–Meier和Cox生存曲线比较;

选入相应的自变量即可。

结果显示Kaplan–Meier观测曲线与Cox回归预测曲线重合性较好,满足比例风险假设。

在这里插入图片描述

如果运气不好,你的数据违背了比例风险的假定,可以考虑采用含时依协变量的Cox回归,而且含时依协变量的Cox回归也可以作为验证比例风险的假设的一种手段。个人理解,这个所谓时依协变量,其实就是在Cox回归里构建的一个交互作用项。这个关于含时依协变量的Cox回归我们放在以后分享。

<think>好的,我现在需要解决用户提出的关于Cox比例风险模型中多个协变量不满足比例风险假设的问题。首先,我需要回顾Cox模型的基本概念和PH假设的重要性。根据引用[2]和[3],Cox模型的核心是比例风险假设,即协变量对风险率的影响随时间呈比例关系。如果这一假设被违反,模型的准确性会受到影响。 接下来,用户询问的是当多个协变量不满足PH假设时的解决方。我需要整理常见的处理策略,可能包括分层分析、时间交互项、参数模型调整、模型转换等。根据已有的知识,分层Cox模型可以将违反假设的变量作为分层变量,但只适用于分类变量。时间交互项则是将变量与时间相乘,引入时变协变量。此外,参数模型如加速失效时间模型可能更合适,或者使用可处理时变协变量的模型如加性风险模型。 然后,我需要考虑验证方和替代模型。例如,使用Schoenfeld残差检验PH假设是否成立,或者转向其他模型如多状态模型或机器学习方。引用中提到Newton-Raphson用于参数估计,但可能不直接相关。 最后,需要确保回答结构清晰,符合用户要求的中文回答,并生成相关问题。同时,正确引用站内的参考资料,比如在分层分析和模型验证部分引用[2]和[3]。需要检查是否有遗漏的方或错误的信息,确保建议的解决方案有效且基于可靠来源。</think>### Cox比例风险模型中协变量违反PH假设的解决方Cox比例风险模型中的多个协变量不满足比例风险PH)假设时,可通过以下方处理: --- #### 1. **分层分析(Stratified Cox Model)** - **方**:将违反PH假设的变量作为分层变量,构建分层Cox模型。例如,若变量$Z$不满足PH假设,则模型形式为: $$ h(t|X,Z) = h_{0z}(t) \exp(\beta X) $$ 其中$h_{0z}(t)$表示不同$Z$层的基础风险函数[^2]。 - **适用场景**:适用于分类变量,且层间样本量充足的情况。 --- #### 2. **引入时间交互项** - **方**:将违反PH假设的变量与时间函数(如$t$、$\ln(t)$或分段函数)相乘,构建时变协变量。例如: $$ \beta(t) = \beta + \gamma g(t) $$ 模型改写为: $$ h(t|X) = h_0(t) \exp\left(\beta X + \gamma X \cdot g(t)\right) $$ - **验证**:通过似然比检验或Wald检验判断交互项$\gamma$的显著性[^3]。 --- #### 3. **参数模型替代** - **加速失效时间模型(AFT)**:假设协变量线性影响生存时间的对数,形式为: $$ \ln(T) = \alpha + \beta X + \sigma \epsilon $$ 其中$\epsilon$为误差分布(如极值分布)。 - **加性风险模型(Additive Model)**:风险函数为: $$ h(t|X) = h_0(t) + \beta X $$ 适用于风险效应为加性且非比例的场景。 --- #### 4. **分段PH模型** - **方**:将时间轴划分为若干区间,在每个区间内单独拟合Cox模型,允许系数$\beta$随时间变化。例如: $$ \beta(t) = \begin{cases} \beta_1 & t < t_1 \\ \beta_2 & t_1 \leq t < t_2 \end{cases} $$ --- #### 5. **模型诊断与验证** - **Schoenfeld残差检验**:通过检验残差与时间的相关性判断PH假设是否成立[^3]。 - **图形**:绘制$\ln(-\ln(S(t)))$曲线,若曲线平行则满足PH假设。 --- #### 6. **替代模型推荐** - **多状态模型**:处理时间依赖性协变量或非比例风险。 - **机器学习方**:如随机生存森林、深度学习模型,适用于高维数据且无需严格假设。 --- ### 示例代码(R语言) ```r # 含时间交互项的Cox模型 library(survival) fit <- coxph(Surv(time, status) ~ age + tt(sex), data = lung, tt = function(x, t, ...) x * log(t)) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生信小博士

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值