Carla学习02

安装并调试罗技G923

安装驱动

(参考 1)
电脑连接上罗技G923并成功安装new-lg4ff-master驱动后,输入$ sudo dmesg |grep logi,得到如下运行结果
Alt
对于1中第三部分jstest-gtk 可视化调试工具,打开可视化工具应为$ sudo jstest-gtk,没有空格。

在CARLA中使用方向盘

(参考 2)
打开jstest-gtk $ sudo jstest-gtk
调试方向盘找到Axis0~5对应按键/踏板,配置wheel_config.ini文件。

cd ~/carla/PythonAPI/examples
gedit wheel_config.ini

粘贴下述内容并保存

[G923 Racing Wheel]
steering_wheel = 0
clutch = 1					
throttle = 2
brake = 3
handbrake = 4
reverse = 5

由于CARLA自带的manual_control_steeringwheel.py文件中是采用的G29,需要将内容中的232~241行中的G29全部修改为G923,修改后代码如下:

self._parser = ConfigParser()
self._parser.read('wheel_config.ini')
self._steer_idx = int(
    self._parser.get('G923 Racing Wheel', 'steering_wheel'))
self._throttle_idx = int(
    self._parser.get('G923 Racing Wheel', 'throttle'))
self._brake_idx = int(self._parser.get('G923 Racing Wheel', 'brake'))
self._reverse_idx = int(self._parser.get('G923 Racing Wheel', 'reverse'))
self._handbrake_idx = int(
    self._parser.get('G923 Racing Wheel', 'handbrake'))

然后就可以使用罗技G923在CARLA中仿真驾驶了

# 打开终端1
cd ~/carla && ./CarlaUE4.sh
# 打开终端2
cd ~/carla/PythonAPI/examples
# 本机运行
python manual_control_steeringwheel.py 
# 非本机运行
python manual_control_steeringwheel.py --host <服务器地址>

ROS框架学习

(参考古月居b站教程)

创建工作空间和功能包

工作空间是一个存放开发相关文件的文件夹。
src: 代码空间
build: 编译空间
devel: 开发空间
install: 安装空间

创建工作空间

mkdir -p ~/catkin_ws/src		# catkin_ws可以任意命名
cd ~/catkin_ws/src
catkin_init_workspace

编译工作空间

cd ~/catkin_ws		# 编译工作空间一定要在这个目录下进行
catkin_make			# 编译src下所有功能包源码
catkin_make install	# 产生install安装空间,可不使用

设置环境变量

source devel/setup.bash

检查环境变量

echo $ROS_PACKAGE_PATH

创建功能包

catkin_create_pkg <package name> [depend1] [depend2] [depend3]
注:同一空间下,不允许存在同名功能包;不同空间下,允许存在同名功能包

cd ~/catkin_ws/src
catkin_create_pkg test_pkg std_msgs rospy roscpp

编译功能包

cd ~/catkin_ws
catkin_make
source ~/catkin_ws/devel/setup.bash

CMakeLists.txt和package.xml

CMakeLists.txt:描述功能包的编译规则
package.xml:描述功能包相关信息、依赖的包

问题记录:
1.roslaunch和rosrun之间的区别。(参考3

### 使用Carla进行强化学习实现自动驾驶仿真教程 #### 选择环境设置与安装依赖项 为了在Carla环境中实施基于深度强化学习的自动驾驶模拟,首先需要配置合适的开发环境。这通常涉及下载并安装特定版本的Carla模拟器以及必要的Python库和其他工具[^2]。 #### 初始化车辆及其传感器装备 创建用于训练模型的基础场景至关重要。通过编写脚本初始化一辆或多辆汽车,并为其装配RGB摄像头等感知设备来收集周围世界的视觉信息作为输入源给到后续处理模块。 #### 设计奖励机制定义目标函数 构建有效的奖惩体系对于指导算法优化行为模式非常关键。根据项目需求设定具体的目标——比如保持车道内行驶、跟随前车安全距离或是完成指定路径导航任务;同时针对不同驾驶表现给予相应分数反馈以促进良好决策形成过程[^1]。 #### 构建神经网络架构选取合适的学习策略 采用适当类型的深层结构(如卷积层组合循环单元)搭建预测控制器能够更好地理解复杂交通状况下的动态变化规律。此外还需挑选恰当的方法论框架来进行参数调整工作,例如DQN, PPO 或者 TRPO 等流行技术方案均适用于此类应用场景下探索最优解空间的任务。 ```python import gym from stable_baselines3 import DDPG env = gym.make('carla-v0') model = DDPG('MlpPolicy', env, verbose=1) model.learn(total_timesteps=10_000) obs = env.reset() for i in range(1000): action, _states = model.predict(obs) obs, rewards, dones, info = env.step(action) env.render() ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值