✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、期刊写作与指导,代码获取、论文复现及科研仿真私。
🍎更多Matlab代码及仿真定制内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
锂离子电池作为一种重要的储能器件,在电动汽车、移动电子设备等领域发挥着至关重要的作用。随着锂电池的广泛应用,其健康状态 (State of Health, SoH) 的准确评估变得尤为重要。本文针对锂电池SoH估计问题,提出了一种基于蜣螂优化算法 (Dung Beetle Optimization, DBO) 和随机森林 (Random Forest, RF) 的新型算法 DBO-RF。DBO 算法模拟了蜣螂觅食和滚粪球的自然行为,具有较强的全局搜索能力和局部寻优能力。RF 算法通过构建多个决策树,并进行投票机制,有效地降低了模型过拟合的风险,提高了模型的泛化能力。本文首先使用 DBO 算法对 RF 模型中的超参数进行优化,然后利用优化的 RF 模型进行锂电池 SoH 估计。仿真实验表明,DBO-RF 算法在锂电池 SoH 估计精度和鲁棒性方面均优于传统的机器学习算法,为锂电池的健康管理提供了新的思路。
关键词: 锂电池;健康状态估计;蜣螂优化算法;随机森林;MATLAB
1. 引言
近年来,随着电动汽车、移动电子设备等领域的发展,对锂离子电池的需求不断增长。锂离子电池具有能量密度高、循环寿命长、环保等优点,被广泛应用于各种储能系统中。然而,锂离子电池在使用过程中会不可避免地发生性能衰减,其健康状态会随着循环次数的增加而下降。因此,准确评估锂电池的健康状态,对保证锂电池的安全运行和延长其使用寿命具有重要意义。
传统的锂电池 SoH 估计方法主要依赖于电池的物理模型,例如电化学模型和等效电路模型。然而,这些模型通常过于复杂,参数难以确定,且对电池的初始状态和环境条件敏感。近年来,机器学习方法在锂电池 SoH 估计领域得到了广泛应用,其主要优点是无需建立复杂的物理模型,只需要利用电池的运行数据进行训练即可。
随机森林 (RF) 是一种基于决策树的机器学习算法,具有较高的泛化能力和鲁棒性,在锂电池 SoH 估计中取得了较好的效果。然而,RF 算法的性能受其超参数的影响较大,例如树的数量、树的深度、节点分裂标准等。为了提高 RF 算法的性能,需要对这些超参数进行优化。
蜣螂优化算法 (DBO) 是一种新型的元启发式优化算法,模拟了蜣螂觅食和滚粪球的自然行为。DBO 算法具有较强的全局搜索能力和局部寻优能力,在许多优化问题中都取得了优异的性能。
本文提出了一种基于 DBO-RF 的锂电池 SoH 估计方法,利用 DBO 算法对 RF 算法的超参数进行优化,并利用优化的 RF 模型进行锂电池 SoH 估计。
2. 锂电池健康状态评估
2.1 锂电池健康状态指标
锂电池的健康状态 (SoH) 指的是电池相对于其初始容量的容量保持率。SoH 通常表示为电池当前容量与初始容量的百分比。
2.2 锂电池健康状态估计方法
常用的锂电池 SoH 估计方法主要包括以下几种:
-
基于物理模型的方法: 使用电化学模型或等效电路模型来描述电池的运行过程,通过模型参数的变化来评估 SoH。
-
基于数据驱动的方法: 利用机器学习算法对电池的运行数据进行分析,建立 SoH 估计模型。
3. 蜣螂优化算法 (DBO)
3.1 DBO 算法原理
DBO 算法模拟了蜣螂觅食和滚粪球的自然行为。蜣螂通过滚动粪球来寻找食物,并利用粪球的大小和重量来评估其质量。在 DBO 算法中,每个蜣螂代表一个解,粪球的大小和重量代表解的质量。DBO 算法通过以下步骤进行搜索:
-
初始化: 随机生成一定数量的蜣螂,每个蜣螂代表一个解。
-
寻找食物: 每个蜣螂按照一定的规则在搜索空间中移动,寻找最佳解。
-
滚粪球: 当蜣螂找到食物后,会将其滚成粪球,并将粪球带到指定地点。
-
更新解: 根据蜣螂的觅食效率和滚粪球的成功率,更新解的质量。
3.2 DBO 算法的优点
-
具有较强的全局搜索能力和局部寻优能力。
-
参数设置简单,易于实现。
-
对噪声和局部最优解具有较好的鲁棒性。
4. 随机森林 (RF)
4.1 RF 算法原理
RF 算法通过构建多个决策树,并进行投票机制,来进行分类或回归预测。每个决策树都是基于训练数据的随机子集和特征子集构建的,从而降低了模型过拟合的风险。
4.2 RF 算法的优点
-
具有较高的泛化能力和鲁棒性。
-
对噪声和异常值具有较好的容忍度。
-
能够处理高维数据。
5. DBO-RF 锂电池 SoH 估计算法
5.1 算法流程
DBO-RF 锂电池 SoH 估计算法主要包括以下步骤:
-
收集锂电池的运行数据,包括电压、电流、温度等。
-
使用 DBO 算法对 RF 模型中的超参数进行优化,例如树的数量、树的深度、节点分裂标准等。
-
利用优化的 RF 模型对锂电池 SoH 进行估计。
5.2 算法实现
本文使用 MATLAB 软件对 DBO-RF 算法进行实现。
-
DBO 算法实现: 使用 MATLAB 的优化工具箱实现 DBO 算法。
-
RF 算法实现: 使用 MATLAB 的机器学习工具箱实现 RF 算法。
6. 仿真实验
为了验证 DBO-RF 算法的有效性,本文进行了仿真实验。实验数据来自公开的锂电池数据集。
6.1 实验结果
仿真实验结果表明,DBO-RF 算法在锂电池 SoH 估计精度和鲁棒性方面均优于传统的机器学习算法,例如支持向量机 (SVM) 和人工神经网络 (ANN)。
6.2 实验结论
DBO-RF 算法是一种有效的锂电池 SoH 估计方法,具有较高的精度和鲁棒性,为锂电池的健康管理提供了新的思路。
7. 结论
本文提出了一种基于 DBO-RF 的锂电池 SoH 估计算法,利用 DBO 算法对 RF 模型中的超参数进行优化,并利用优化的 RF 模型进行锂电池 SoH 估计。仿真实验结果表明,DBO-RF 算法在锂电池 SoH 估计精度和鲁棒性方面均优于传统的机器学习算法。未来,将进一步研究 DBO-RF 算法的应用,并探索更有效的锂电池 SoH 估计方法。
A. DBO 算法代码
% DBO 算法代码
function [best_solution, best_fitness] = DBO(fitness_function, ...
dimension, population_size, max_iterations)
% 初始化蜣螂群体
population = rand(population_size, dimension);
% 计算每个蜣螂的适应度
fitness = fitness_function(population);
% 找到当前最优解
[best_fitness, best_index] = min(fitness);
best_solution = population(best_index, :);
% 开始迭代
for i = 1:max_iterations
% 更新每个蜣螂的位置
for j = 1:population_size
% 随机选择两个其他蜣螂
index1 = randi(population_size);
index2 = randi(population_size);
while index1 == index2
index2 = randi(population_size);
end
% 更新蜣螂的位置
population(j, :) = population(j, :) + ...
rand(1) * (population(index1, :) - population(index2, :));
end
% 计算每个蜣螂的适应度
fitness = fitness_function(population);
% 找到当前最优解
[current_best_fitness, current_best_index] = min(fitness);
if current_best_fitness < best_fitness
best_fitness = current_best_fitness;
best_solution = population(current_best_index, :);
end
end
end
⛳️ 运行结果
🔗 参考文献
[1] 顾彦东,王琪,翟延亚,等.基于随机森林-H_(∞)算法的锂电池SOC估计[J].电力电子技术, 2023, 57(11):68-73.
[2] 孙猛猛,夏雪磊.基于随机森林的锂离子电池健康状态估计[J].农业装备与车辆工程, 2019, 57(2):5.DOI:CNKI:SUN:SDLG.0.2019-02-016.
[3] 孙猛猛.基于数据驱动方法的锂离子电池健康状态估计[D].昆明理工大学[2024-08-03].DOI:CNKI:CDMD:2.1018.867502.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类