1. 微分方程的基本概念

1. 微分方程的基本概念

1.1 微分方程

一般地,凡表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做 微分方程 ,有时也简称为 方程

1.2 微分方程的阶

微分方程所出现的未知函数的最高阶导数的阶数一般是 n n n 阶微分方程的形式为 F ( x , y , y ′ , … , y ( n ) ) = 0 F(x,y,y',\dots,y^{(n)}) = 0 F(x,y,y,,y(n))=0,其中, y ( n ) y^{(n)} y(n) 必须出现,其他的(包括 x x x)都可不出现。

1.3 微分方程的解

满足微分方程的函数,可以带入方程使之成为恒等式的函数。

1.3.1 微分方程的通解

如果微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫做 微分方程的通解

1.3.2 微分方程的特解

首先需要知道初值条件:就是知道 x = x 0 x = x_0 x=x0 时, y = y 0 , y ′ = y 0 ′ y = y_0, y' = y'_0 y=y0,y=y0

由初值条件确定的常数,代入通解中所得到的解就是 微分方程的特解

1.4 初值问题

求微分方程 y ′ = f ( x , y ) y' = f(x,y) y=f(x,y) 满足初值条件 y ∣ x = x 0 = y 0 y|_{x=x_0}=y_0 yx=x0=y0 的特解这样的问题,叫做一阶微分方程的初值问题,可以记作

{ y ′ = f ( x , y ) y ∣ x = x 0 = y 0 \begin{cases} y' = f(x,y) \\ y|_{x=x_0}=y_0 \end{cases} {y=f(x,y)yx=x0=y0

几何意义:求微分方程的通过点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 的那条积分曲线。

PS: 微分方程的解的图形时一条曲线,叫做 微分方程的积分曲线

这里通过一个例子来让大家体会一下这个过程。

1.5 例题

来自同济《高等数学》 p 297 p297 p297

一曲线通过点 ( 1 , 2 ) (1,2) (1,2) ,且在该曲线上任一点 M ( x , y ) M(x,y) M(x,y) 处的切线斜率为 2 x 2x 2x,求曲线方程。

由导数的几何意义,我们不难知道未知函数满足这样的关系式: d y d x = 2 x \frac{dy}{dx}=2x dxdy=2x

同时对两边积分就得到 y = x 2 + C y=x^2+C y=x2+C,其中 C C C 是任意常数(此时我们得到的就是通解)。

但是,曲线还通过点 ( 1 , 2 ) (1,2) (1,2) ,那么我们就不难确定 C = 1 C=1 C=1,此时得到最后结果 y = x 2 + 1 y=x^2+1 y=x2+1 就是微分方程的一个特解。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值