电机电角度和机械角度的终极解释(网络上没一个说清楚什么是电角度,我去墙上看到的解释,给力)

来源:https://www.quora.com/What-is-the-difference-between-electrical-angle-and-mechanical-angle-in-rotating-electrical-machines

说人话就是,机械角度就是转子相对于定子旋转的角度,就是人看到的角度。

电角度: 一个点的磁极发生变化从N到S级 变化的时候,代表电角度是180度(这个很多人都不讲)。所以电角度=极对数(或者级数/2)*机械角度

bldc FOC控制里面, park变换,用的就是电角度。千万别搞错哦。

YouTube上有很更好的解释,我不能说我理解透了。大概就是电动势的角度(也就是控制的交流电的角度,可能理解有错误,欢迎指导。下面截图一目了然)

https://www.youtube.com/watch?v=CirQpBadIqc

https://www.youtube.com/watch?app=desktop&v=1WTzGm6yCSQ

我搬运到bilibili了(有翻译)电角度和机械角度的理解_哔哩哔哩_bilibili

### 步进电机FOC控制原理 步进电机是一种将脉冲转化为角位移的执行器,在工业自动化、机器人技术消费子领域广泛应用。然而,传统的步进电机驱动方式通常依赖于简单的流波形控制,这可能导致效率低下以及振动噪声等问题。为了提高性能并减少这些问题,可以引入磁场定向控制(Field-Oriented Control, FOC),这是一种先进的电机控制策略。 #### FOC基本概念 FOC的核心思想是通过解耦定子流分量来独立调节转矩磁通密度[^1]。这种方法能够显著提升电机运行效率平稳性。尽管FOC最初设计用于三相交流感应电机或永磁同步电机(PMSM),但在某些条件下也可以应用于步进电机。 #### 将FOC应用于步进电机的技术挑战 当考虑把FOC技术扩展到步进电机上时会遇到几个主要困难: - **非线性特性**:步进电机内部存在较强的铁芯饱效应其他非理想因素,这些都会影响模型精度。 - **多极结构**:相比PMSM,步进电机往往有更多对数的极对,增加了控制系统复杂度。 因此,在实际操作过程中需要特别注意如何建立精确的动学方程组以便实施有效的反馈调整机制。 #### 实现方法概述 以下是采用FOC控制步进电机的一种可能方案描述: ##### 建立动态数学模型 首先需构建适合该特定类型电机使用的状态空间表达式或者差分方程式表示法。此过程涉及参数辨识环节以获取诸如阻R、自感Ls及互感Lm等重要气属性数值。 ##### 设计控制器架构 利用克拉克变换(Clark Transform) 帕克变换(Park Transform), 把ABC坐标系下的原始测量数据映射至dq旋转参考帧下处理。这样做的好处是可以分别对待直轴(d-axis)上的激磁分量Id与交轴(q-axis)上的扭矩贡献项Iq. ```python import numpy as np def clark_transform(i_a, i_b, i_c): """ Perform Clark transformation from three-phase currents to two-phase stationary reference frame. Parameters: i_a (float): Phase A current value. i_b (float): Phase B current value. i_c (float): Phase C current value. Returns: tuple: Transformed alpha-beta components of the current vector. """ T_clark = np.array([[2/3, -1/3, -1/3], [0, sqrt(3)/3, -sqrt(3)/3]]) abc_vector = np.array([i_a,i_b,i_c]).T return np.dot(T_clark ,abc_vector) def park_transform(theta_electric,i_alpha,i_beta): """ Apply Park transform converting values between stator-fixed 'alpha-beta' and rotor-oriented 'd-q'. Args: theta_electric(float)- Electrical angle at instant t; i_alpha(float)- Alpha component after Clark conversion ; i_beta(float)- Beta counterpart post same procedure . Return: Tuple containing d,q axis projections respectively. """ sin_theta,sin_negtheta=trigonometric_functions_of_angle() cos_theta=-sin_negtheta;cos_negtheta=sin_theta; matrix_parking=np.array([ [cos_theta,-sin_theta], [sin_theta, cos_theta]]) transformed_currents=np.matmul(matrix_parking,[i_alpha,i_beta]) id_torque,id_magnetizing=transformed_currents return(id_torque,id_magnetizing) ``` 上述代码片段展示了ClarkPark转换的基础计算逻辑,这是实现FOC的关键步骤之一。 ##### 调节PI控制器增益 最后一步是在闭环系统中加入比例积分(Proportional Integral, PI)调节器用来维持期望的速度水平或是负载条件变化情况下的稳定输出矩响应速度等方面表现良好。 --- ### 结论 虽然理论上可行,但由于前述提到的各种原因使得直接移植传统意义上的FOC算法并不总是最优解决方案对于步进马达而言。工程师们经常探索混合型态或者其他定制化版本从而达到最佳效果平衡点。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值