DH参数介绍

机械手末端到基坐标系的变换关系:
这里写图片描述

通常,每一个变换需要6个独立参数来描述坐标系i相对坐标系i-1的关系,3个用来描述位置另外3个用来描述方向。

在1995年,Jacques Denavit 和 Richard Hartenberg 提出了一种系统化的方法来解决这个问题。他们的方法值需要4个参数来描述位置和方向与相邻坐标系的关系。

DH参数第一次提出来以后经过了几次修改。以下是几个代表性的文章:
这里写图片描述

本文采用的是John J Craig的文章。参数包括这里写图片描述这里写图片描述下图帮助我们来理解:
这里写图片描述

为了理解方便,此处就步翻译了:
这里写图片描述


这里写图片描述

与两个矢量相互垂直的单位矢量被定义为:
这里写图片描述

从第i-1关节的坐标到第i关节的坐标的齐次变换被构造为一个四个基本变换,两个旋转和两个变换的序列,如下所示:

这里写图片描述

<下一篇>

DH参数(Denavit-Hartenberg parameters)是机器人学中常用的一种参数化方法,用于描述机器人关节之间的运动。DH变换是一种坐标系变换方法,通过定义坐标系之间的关系来描述机器人的运动。 DH参数的核心思想是将机器人的每个关节看作是一个坐标系,通过定义坐标系之间的转换关系来描述机器人的运动。DH参数包括四个参数:$\theta_i$,$d_i$,$a_i$,$\alpha_i$,其中$i$表示第$i$个关节。具体地,$\theta_i$表示第$i$个关节绕$z_{i-1}$轴旋转的角度,$d_i$表示第$i$个坐标系沿$z_{i-1}$轴的偏移距离,$a_i$表示第$i$个坐标系沿$x_i$轴的偏移距离,$\alpha_i$表示第$i$个坐标系绕$x_i$轴旋转的角度。 通过DH参数,可以将机器人的运动转换为各个坐标系之间的变换关系。具体地,假设机器人有$n$个关节,则第$i$个关节的变换矩阵为: $$T_i^{i-1}=\begin{bmatrix}\cos\theta_i&-\sin\theta_i\cos\alpha_i&\sin\theta_i\sin\alpha_i&a_i\cos\theta_i\\\sin\theta_i&\cos\theta_i\cos\alpha_i&-\cos\theta_i\sin\alpha_i&a_i\sin\theta_i\\0&\sin\alpha_i&\cos\alpha_i&d_i\\0&0&0&1\end{bmatrix}$$ 其中$T_i^{i-1}$表示第$i$个坐标系相对于第$i-1$个坐标系变换矩阵。通过将各个关节的变换矩阵相乘,可以得到机器人末端执行器相对于坐标系变换矩阵,即: $$T_{n}^{0}=T_1^0T_2^1\cdots T_n^{n-1}$$ 通过求解上述变换矩阵,可以得到机器人末端执行器的位置和姿态。DH参数DH变换是机器人学中常用的一种坐标系变换方法,广泛应用于机器人的运动学分析和控制中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值