拉普拉斯变换学习笔记

拉普拉斯变换的定义

对复值函数f(t),若\int _0^\infty f(t)e^{-st}dt在复平面上的一个区域D(s \in D)内收敛于F(s),则称

F(s)=\int _0^\infty f(t)e^{-st}dt

为函数的拉普拉斯变换(简称拉氏变换),记为

F(S)=L[f(t)]

公式:


其中 f(t)相当于二维坐标(左);F(s)相当于三维坐标(右)

基本公式:

拉普拉斯变换的线性性质

欧拉公式: 

导数积分:

 卷积的变换:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值