【YOLOv10改进- 特征融合NECK】Slim-neck:目标检测新范式,既轻量又涨点

66 篇文章 8 订阅 ¥99.90 ¥299.90

YOLOv10目标检测创新改进与实战案例专栏

改进目录: YOLOv10有效改进系列及项目实战目录:卷积,主干 注意力,检测头等创新机制

专栏链接: YOLOv10 创新改进有效涨点

介绍

image-20240622102155148

摘要

目标检测是计算机视觉中的一项重要下游任务。对于车载边缘计算平台来说,巨大的模型难以满足实时检测的要求,而由大量深度可分离卷积层构建的轻量化模型无法达到足够的准确性。我们引入了一种新的轻量级卷积技术,GSConv,以减轻模型的重量但保持准确性。GSConv 在模型的准确性和速度之间实现了出色的平衡。我们还提供了一种设计范式,称为 slim-neck,以实现检测器更高的计算成本效益。我们的方法在超过二十组比较实验中得到了稳健验证。特别是,通过我们的方法改进后的检测器在与原始版本相比时取得了最先进的结果(例如,在 Tesla T4 GPU 上以约 100FPS 的速度在 SODA10M 数据集上达到 70.9% mAP0.5)。代码可在 https://github.com/alanli1997/slim-neck-by-gsconv 获得。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

Slim-Neck是一种用于目标检测器架构的设计范式,旨在通过引入轻量级卷积技术GSConv来实现在维持准确性的同时满足实时检测需求。Slim-Neck的设计理念是在保持准确性的同时提高检测器的计算成本效益。GSConv是一种通用的卷积方法,旨在减少计算复杂性,降低推理时间,并保持模型的准确性。

Slim-Neck的设计原理包括以下几个关键点:

  1. GSConv:GSConv是Slim-Neck中的关键技术,它通过减少冗余信息和压缩不必要的重复信息来降低计算复杂性。GSConv在颈部阶段处理连接的特征图,这时特征图已经变得足够纤细,通道维度达到最大,宽度和高度维度达到最小,从而使得转换更加适度。
  2. 纤细颈部设计:Slim-Neck通过设计纤细的颈部结构来降低检测器的计算复杂性和推理时间,同时保持准确性。这种设计受到了DensNet、VoVNet和CSPNet等方法的启发,旨在提高CNNs的学习能力。
  3. 结构设计:Slim-Neck的结构设计旨在降低计算复杂性,同时保持准确性。通过合理设计的结构,Slim-Neck能够在保持准确性的同时提高计算效率,特别适用于轻量级检测器,如YOLOv3/v4-tiny。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO大师

你的打赏,我的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值