YOLOv10目标检测创新改进与实战案例专栏
改进目录: YOLOv10有效改进系列及项目实战目录:卷积,主干 注意力,检测头等创新机制
专栏链接: YOLOv10 创新改进有效涨点
介绍
摘要
摘要——滑坡是一种广泛且具有毁灭性的自然灾害,对人类生命、安全和自然资产构成严重威胁。研究利用遥感影像进行滑坡精准检测的高效方法具有重要的学术和实际意义。本文提出了一种新颖且有效的滑坡检测模型LS-YOLO,利用遥感影像进行滑坡检测。我们首先构建了一个多尺度滑坡数据集(MSLD),并在数据增强中引入随机种子以增加数据的鲁棒性。考虑到遥感影像中滑坡的多尺度特性,设计了基于高效通道注意力、平均池化和空间可分离卷积的多尺度特征提取模块。为了增加模型的感受野,在解耦头中采用了膨胀卷积。具体而言,将由膨胀卷积组成的上下文增强模块添加到解耦头回归任务分支中,然后用改进的解耦头替换YOLOv5s中的耦合头。大量实验表明,我们提出的模型在多尺度滑坡检测方面具有高性能,优于其他目标检测模型(faster RCNN、SSD、EfficientDet-D0、YOLOv5s、YOLOv7和YOLOX)。与基准模型YOLOv5s相比,LS-YOLO在滑坡检测中的AP提升了2.18%,达到了97.06%。
文章链接
论文地址:论文地址
代码地址:代码地址
基本原理
LS-YOLO
-
多尺度滑坡数据集(MSLD):
- 构建了一个包含大量滑坡样本的MSLD,具有高度的类内变化、广泛的滑坡尺寸范围和复杂的背景,为模型训练提供了丰富的数据资源。
-
多尺度特征提取(MSFE)模块:
- MSFE模块包括Efficient Channel Attention(ECA)、平均池化和空间可分离卷积,用于充分提取滑坡特征信息。
- ECA部分引入了注意力机制,通过全局平均池化聚合特征并自适应地确定核大小,以增强模型对重要特征的关注。
-
改进的解耦头:
- LS-YOLO通过引入扩张卷积来改进解耦头,增加模型的感受野,提高滑坡定位的准确性。