论文《Probabilistic Surfel Fusion for Dense LiDAR Mapping》的阅读记录

使用LIDAR数据建立surfels的两个问题

在构建密集surfel地图时,相对于使用RGB-D数据建立surfel,使用LIDAR数据建立surfels存在两个主要问题。

surfel退化

在RGB-D数据中,只需要通过像素平面的邻点,即可找到目标点的相邻点。但是在LIDAR数据中,没有投影平面,只能在3D空间内通过距离寻找相邻点。
在这里插入图片描述
如图,LIDAR点云中法向的退化。其中绿色的线表示法线,a)展示了理想情况,即点分布均匀时,求取的法向;b)退化情况,此时,点距离传感器较远,点云在物体表面呈线状分布,从这样的点集中估计得到的法线是不可靠的。
为了解决这样的情况,我们对surfel的位置和法向的不确定性进行建模。

surfel匹配更为复杂

在RGB-D数据中,可以采用投影数据关联。但是因为没有投影平面,该方法不适合LIDAR数据。最简单的方式是采用最近距离匹配。一般而言,考虑到传感器误差,如果搜索半径小于传感器误差,匹配准确性会降低,同时,如果搜索半径大于传感器误差,则会降低地图分辨率。但在LIDAR数据中,激光点沿其光束方向的深度不确定性较高,因此半径搜索方法会严重降低地图分辨率。可能会有人考虑在搜索时考虑该不确定性,如下图右侧,而这种方法也常常应用于基于滤波的SLAM算法。但是,在这种情况下,很难控制地图分辨率而不分散(discretizing)环境 。 为了解决这个问题,我们提出了一种新的用于surfel匹配的算法,该算法保证了的地图分辨率。
在这里插入图片描述
如图,传统的寻找点匹配的方法。红线表示雷达射线方向,黑点表示激光点。左侧是半径搜索方法,右侧是沿射线搜索(考虑不确定度)。

地图表示

在这里插入图片描述
系统建立两种全局surfel地图,ellipsoid surfel map(ESM) S g S_{g} Sg和disk surfel map (DSM) M g M_g Mg。前者主要用于快速且鲁棒地定位,而后者用于精确地进行三维环境重建。
两个surfel地图分别独立地使用他们的局部地图 S l S_l Sl M l M_l Ml进行更新,而局部地图则来源于传感器获得的激光扫描。
ESM是由3D椭球组成,使用多分辨率体素哈希从激光点中提取。每一个椭圆: { c ∈ R 3 , Σ c ∈ R 3 × 3 } \left\{\mathbf{c} \in \mathbb{R}^{3}, \Sigma_{\mathbf{c}} \in \mathbb{R}^{3 \times 3}\right\} {cR3,ΣcR3×3},前者是质心,后者是协方差矩阵,表达了点在体素内的分布。
DSM由2D disk surfel组成, φ = { p ∈ R 3 , n ^ ∈ R 3 } ∈ M \varphi =\left\{p\in\mathbb{R}^3,\hat{\mathbf{n}} \in \mathbb{R}^{3}\right\}\in \mathbb{M} φ={pR3,n^R3}M,前者是位置,从激光点中均匀取样获得;后者是是法向,由激光点及其邻域获得。与传统的surfel不同,我们还将使用 Σ p , Σ n ^ ∈ R 3 × 3 \Sigma_{\mathbf{p}}, \Sigma_{\hat{\mathbf{n}}} \in \mathbb{R}^{3 \times 3} Σp,Σn^R3×3、即disk surfel 位置和法向的不确定性,用于surfel融合。

ESM地图定位

找到局部地图 S l \mathbb{S}_{l} Sl和ESM地图 S g S_{g} Sg之间的匹配关系,通过最小化点面误差配准当前局部地图 S l \mathbb{S}_{l} Sl
e = ∑ i = 1 n e i 2 , e i = n ^ i ⊤ ( p i g − ( R p i l + t ) ) e=\sum_{i=1}^{n} e_{i}^{2}, \quad e_{i}=\hat{\mathbf{n}}_{i}^{\top}\left(\mathbf{p}_{i}^{g}-\left(\mathbf{R} \mathbf{p}_{i}^{l}+\mathbf{t}\right)\right) e=i=1nei2,ei=n^i(pig(Rpil+t))
其中, R ∈ S O ( 3 ) \mathbf{R} \in \mathrm{SO}(3) RSO(3) t ∈ R 3 \mathbf{t} \in \mathbb{R}^{3} tR3指代变换, ( p i g , n ^ i g ) ∈ S g \left(\mathbf{p}_{i}^{g}, \hat{\mathbf{n}}_{i}^{g}\right) \in \mathbb{S}_{g} (pig,n^ig)Sg ( p i l , n ^ i l ) ∈ S l \left(\mathbf{p}_{i}^{l}, \hat{\mathbf{n}}_{i}^{l}\right) \in \mathbb{S}_{l} (pil,n^il)Sl分别指代局部地图和全局地图之间的第 i i i对surfel匹配。 n ^ i = ( n ^ i g + n ^ i l ) / ∣ n ^ i g + n ^ i ′ ∣ \hat{\mathbf{n}}_{i}=\left(\hat{\mathbf{n}}_{i}^{g}+\hat{\mathbf{n}}_{i}^{l}\right) /\left|\hat{\mathbf{n}}_{i}^{g}+\hat{\mathbf{n}}_{i}^{\prime}\right| n^i=(n^ig+n^il)/n^ig+n^i
然后使用高斯牛顿法求解变换。
由于采用的是point-to-plane ICP,所以系统更倾向于选择平面区域的ellipsoid surfels。因此,将采用以下方法融合局部地图和ESM之间匹配的surfel:将ESM全局地图中的surfels替换为局部地图中的surfel,如果局部地图中的surfel拥有更大的 λ 1 \lambda_{1} λ1 λ 2 \lambda_{2} λ2和更小的 λ 3 \lambda_{3} λ3
ESM定位结果,将会用于DSM的融合过程。

DSM中Surfel不确定性建模

位置不确定度

因为surfel质心位置是由激光点位置计算得到,所以具有与LiDAR测量相同的不确定性特征,受入射角,环境温度和湿度的影响。surfel的位置不确定度沿着激光射线方向更大,所以,我们将位置不确定度建模为具有三个主轴的椭球。沿着射线方向的不确定度定义为:距离不确定度 σ r 2 \sigma_{r}^{2} σr2 和 由入射角引起的附加不确定度 σ i 2 \sigma_{i}^{2} σi2。所以在世界坐标系下,完整的位置不确定度为:
Σ p = w R l l R b Σ b ( w R l l R b ) ⊤ \Sigma_{\mathbf{p}}={^{w}} \mathbf{R}_{l} {^{l}}\mathbf{R}_{b} \Sigma_{b}\left(^{w} \mathbf{R}_{l}^{l} \mathbf{R}_{b}\right)^{\top} Σp=wRllRbΣb(wRllRb)
其中, w R l {^w}\mathbf{R}_l wRl l R b {^l}\mathbf{R}_b lRb分别是 从laser到世界坐标,从beam到laser坐标。而在beam坐标系下,不确定度 Σ b = diag ⁡ ( σ x 2 , σ y 2 , σ z 2 ) \Sigma_{b}=\operatorname{diag}\left(\sigma_{x}^{2}, \sigma_{y}^{2}, \sigma_{z}^{2}\right) Σb=diag(σx2,σy2,σz2)。如何从 σ r 2 \sigma_{r}^{2} σr2 σ i 2 \sigma_{i}^{2} σi2得到 Σ b \Sigma_{b} Σb,见[18]。

法向不确定度

法向不确定度直接与协方差矩阵的三个特征值相关,而协方差矩阵由激光点邻域得到。有几种邻域分布不利于法向生成: λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2都很小,局部呈点状分布; λ 1 ≫ λ 2 \lambda_{1} \gg \lambda_{2} λ1λ2,局部点云线状分布; λ 3 \lambda_3 λ3较大,局部点云散乱分布。
因为法向保持模值为1,相当于法向端点在以surfel质心为中心的单位球上运动,因此,法向的不确定度的自由度为2。由于流形空间上的不确定度的传播不容易定义,我们提出了一种近似模型,该模型定义了法向矢量尖端处切向空间中两个自由度的不确定性,如图4所示。
在这里插入图片描述
surfel法向退化的例子,其中绿线为法向,由局部点云(蓝色点)计算得到,因为局部点云呈线状分布,h法向出现退化。法相的不确定度用随机样本的端点(红色点)描述,用切平面上的椭椭圆(红色椭圆)表示。
为了反应这种点云分布和反向不确定度之间的关系,我们定义切向平面上法向不确定度为 diag ⁡ ( σ θ , σ ϕ ) \operatorname{diag}\left(\sigma_{\theta}, \sigma_{\phi}\right) diag(σθ,σϕ),它们是特征值的函数。
σ θ = ( 1 + e − w ( α θ + α z 1 + α z 2 ) ) − 1 σ ϕ = ( 1 + e − w ( α ϕ + α z 1 + α z 2 ) ) − 1 \begin{array}{l} \sigma_{\theta}=\left(1+e^{-w\left(\alpha_{\theta}+\alpha_{z 1}+\alpha_{z 2}\right)}\right)^{-1} \\ \sigma_{\phi}=\left(1+e^{-w\left(\alpha_{\phi}+\alpha_{z 1}+\alpha_{z 2}\right)}\right)^{-1} \end{array} σθ=(1+ew(αθ+αz1+αz2))1σϕ=(1+ew(αϕ+αz1+αz2))1
其中,
α θ = a λ 1 − 1 − 0.5 α ϕ = b λ 2 − 1 − 0.5 α z 1 = log ⁡ ( λ 3 / λ 1 ) c + 0.5 α z 2 = d λ 3 − 0.5 \alpha_{\theta}=a \lambda_{1}^{-1}-0.5\\ \alpha_{\phi}=b \lambda_{2}^{-1}-0.5\\ \alpha_{z 1}=\log \left(\lambda_{3} / \lambda_{1}\right) c+0.5\\ \alpha_{z 2}=d \lambda_{3}-0.5 αθ=aλ110.5αϕ=bλ210.5αz1=log(λ3/λ1)c+0.5αz2=dλ30.5
可以看出, α θ \alpha_{\theta} αθ α ϕ \alpha_{\phi} αϕ分别惩罚了 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2过小的情况。 α z 1 \alpha_{z1} αz1 α z 2 \alpha_{z2} αz2则惩罚了 λ 3 \lambda_3 λ3过大的情况。 a , b , c , d a,b,c,d abcd是缩放系数,并且是统计确定的。 w w w是sigmiod函数的比例因子。
最后,世界坐标系中法向的不确定度为:
Σ n = v diag ⁡ ( σ θ , σ ϕ , ε ) v ⊤ \Sigma_{\mathbf{n}}=\mathbf{v}\operatorname{diag}\left(\sigma_{\theta}, \sigma_{\phi}, \varepsilon\right) \mathbf{v}^{\top} Σn=vdiag(σθ,σϕ,ε)v
其中添加了 ε ε ε以防止矩阵求逆中的奇异性问题。特征向量矩阵 v v v用于将法线不确定性方向与世界坐标系中的邻域点云分布对齐。

DSM中surfel匹配

这一节描述了如何在全局DSM地图 M g M_g Mg和局部DSM地图 M l M_l Ml中寻找匹配,为下一步surfel融合做准备。
首先,通过ICP得到的变换,将局部地图 M l M_l Ml变换到世界坐标系下。对每个surfel φ l ∈ M l \varphi_{l} \in \mathbb{M}_{l} φlMl,需要找到surfel候选集合 A g \mathbb{A}_{g} Ag。通过基于八叉树的最近邻居搜索算法选择初始匹配候选者,然后计算源surfel与每个候选surfel之间的分辨率距离 r r r、深度距离 d d d。分辨率距离 r r r要低于分辨率距离阈值 θ r \theta_r θr。而深度距离 d d d满足:
σ 2 = n ^ s ⊤ Σ s n ^ s + n ^ d ⊤ Σ d n ^ d d / σ < θ d \sigma^{2}=\hat{\mathbf{n}}_{s}^{\top} \Sigma_{s} \hat{\mathbf{n}}_{s}+\hat{\mathbf{n}}_{d}^{\top} \Sigma_{d} \hat{\mathbf{n}}_{d} \\ d / \sigma<\theta_{d} σ2=n^sΣsn^s+n^dΣdn^dd/σ<θd
前者表示源surfel和目标surfel的位置不确定度在法线方向上的传播。而后者 θ d \theta_{d} θd是深度阈值。这种匹配方法使匹配过程可以沿射线方向搜索更多,同时无需体素网格即可有效地保持所需的表面分辨率
匹配过程算法如下:
在这里插入图片描述
两个距离的图示:
在这里插入图片描述

Surfel 融合

定义surfel φ \varphi φ的位置 p ∼ N ( μ p , Σ p ) \mathbf{p} \sim \mathscr{N}\left(\mu_{\mathbf{p}}, \Sigma_{\mathbf{p}}\right) pN(μp,Σp)和法向 n ^ ∼ N ( μ n ^ , Σ n ^ ) \hat{\mathbf{n}} \sim \mathscr{N}\left(\mu_{\hat{\mathbf{n}}}, \Sigma_{\hat{\mathbf{n}}}\right) n^N(μn^,Σn^)
考虑局部地图surfel φ l ∈ M l \varphi_{l} \in \mathbb{M}_{l} φlMl和其在全局地图中的匹配 φ g ∈ M g \varphi_{g} \in \mathbb{M}_{g} φgMg,假设两个观测是独立的,则卡尔曼滤波器给出贝叶斯更新公式为:
μ g ′ = Σ g ′ ( Σ g − 1 μ g + Σ l − 1 μ l ) Σ g ′ = ( Σ g − 1 + Σ l − 1 + Σ s − 1 ) − 1 \begin{aligned} &\mu_{g}^{\prime}=\Sigma_{g}^{\prime}\left(\Sigma_{g}^{-1} \mu_{g}+\Sigma_{l}^{-1} \mu_{l}\right)\\ &\Sigma_{g}^{\prime}=\left(\Sigma_{g}^{-1}+\Sigma_{l}^{-1}+\Sigma_{s}^{-1}\right)^{-1} \end{aligned} μg=Σg(Σg1μg+Σl1μl)Σg=(Σg1+Σl1+Σs1)1
但是,因为法向处于流型当中,应采用不同的做法。法向不确定度的规范形式位于单位球面的切向空间上,同时,为了处理不确定性传播,我们通过等式 Σ n = v diag ⁡ ( σ θ , σ ϕ , ε ) v ⊤ \Sigma_{\mathbf{n}}=\mathbf{v}\operatorname{diag}\left(\sigma_{\theta}, \sigma_{\phi}, \varepsilon\right) \mathbf{v}^{\top} Σn=vdiag(σθ,σϕ,ε)v将2D法线不确定性提升到3D空间,再采用下式获得融合surfel的法向。
Σ n d ′ ← ( Σ n s − 1 + Σ n d − 1 ) − 1 n d ′ ← Σ n d ′ ( Σ n s − 1 n s + Σ n d − 1 n d ) \begin{aligned} &\Sigma_{\mathbf{n}_{d}}^{\prime} \leftarrow\left(\Sigma_{\mathbf{n}_{s}}^{-1}+\Sigma_{\mathbf{n}_{d}}^{-1}\right)^{-1}\\ &\mathbf{n}_{d}^{\prime} \leftarrow \Sigma_{\mathbf{n}_{d}}^{\prime}\left(\Sigma_{\mathbf{n}_{s}}^{-1} \mathbf{n}_{s}+\Sigma_{\mathbf{n}_{d}}^{-1} \mathbf{n}_{d}\right) \end{aligned} Σnd(Σns1+Σnd1)1ndΣnd(Σns1ns+Σnd1nd)
通常,计算获得的法向不确定度不相切于单位球 Σ n d ′ \Sigma_{\mathbf{n}_{d}}^{\prime} Σnd,还要通过一步分解,得到相切分量作为结果。
由于这是一种线性化方法,因此我们将其应用限于表面上两个向量的距离足够小的情况。
在某些情况下,源surfel或目标surfel的法向会因为点云分布而退化。通过查看 σ θ , σ ϕ \sigma_{\theta}, \sigma_{\phi} σθ,σϕ的不确定度比率,可以轻松地找到surfel退化。我们并没有将这些退化的surfel丢弃,并等待其被正确地观测。当目标surfel或源surfel之一退化时,新的法线方向和不确定性将遵循未退化的surfel的方向和不确定性。 在源和目标冲浪都退化的情况下,法线是通过第一主方向的叉积获得的。
具体算法如下:
在这里插入图片描述
其中,得到法向不确定度 ∑ n e w \sum_{new} new 时,添加的不确定度 diag ⁡ ( σ θ s , σ ϕ s , − λ 3 ) \operatorname{diag}\left(\sigma_{\theta}^{s}, \sigma_{\phi}^{s},-\lambda_{3}\right) diag(σθs,σϕs,λ3)是防止surfel对重复的系统误差过拟合,例如由混合像素问题引起的噪声点[23]。
与全局地图不匹配的surfel将作为新的不稳定surfel添加到全局地图中。当重访某个surfel时,将其周围一定范围内的,建立时间超过5min的不稳定surfel删除。

结论

本文,提出了一个新方法——使用概率surfel融合进行密集LIDAR建图。我们构建了两个surfel地图,3D ellipsoid surfel地图(ESM)和2D disk surfel地图(DSM)。我们在稀疏的ESM上对齐点云,并基于贝叶斯滤波更新稠密的DSM。同时,我们对每个surfel的位置和法向量的不确定度进行建模,并考虑了因激光点的分布产生的surfel退化。提出的数据关联方法提高了surfel分辨率,抑制了噪声。
通过模拟数据实验和真是数据实验,与以前的工作相比,我们的方法可以生成更准确的surfel图,并且噪声更少,地图元素最少。 在未来的工作中,我们的方法可以进一步扩展到具有硬件和软件优化功能的实时LiDAR建图,以实时生成准确的密集LiDAR surfel。 这是适用的,因为我们的方法顺序更新了surfel地图,而不是通过批处理来全局优化地图。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值