SLAM_相机与imu的融合基础知识

本文介绍了IMU的基本原理,包括坐标系、状态模型和IMU模型推导,并详细讨论了IMU的误差模型。接着阐述了6轴、9轴传感器以及IMU、VRU和AHRS的区别。探讨了基于滤波和优化的视觉与IMU融合方法,包括松耦合和紧耦合的区别。最后,文章提到了单目/双目与IMU融合在视觉SLAM中的应用,并对比了VI-ORBSLAM与VINS-Mono的初始化方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1. IMU基本原理

坐标系

状态模型

IMU模型推导

2. IMU的误差模型

IMU误差分类

怎么才能形象的说明IMU的bias随机游走?

参考1:

参考2:

陀螺仪的误差模型

3. 6轴,9轴,IMU,VRU和AHRS分别指的是什么?

4. 融合方式概述

4.1 基于滤波的融合方法

松耦合

紧耦合

4.2 基于优化的融合算法

松耦合

紧耦合

5. 单目/双目与imu的融合(一)

6. VI-ORBSLAM 论文阅读笔记

Tracking

Local Mapping

7. ORB-SLAM3 与VINS-Mono的视觉惯导(VI)初始化比较


1. IMU基本原理

惯性测量单元(Inertial Measurement Unit,简称 IMU)一般由3轴加速度计3轴陀螺仪组成。加速度计为力传感器,可根据各方向受力(包含重力)情况计算每个轴上的加速度。陀螺仪为角速度检测仪,可根据每个轴上的角加速度得到各个轴上的角度变化。惯导解算主要是通过加速度计测得的载体加速度和陀螺仪测得的载体相对于导航坐标系角速度,来对载体的位置、 姿态

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

惊鸿一博

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值