全流程实战:使用 Qwen2.5-Omni-7B 微调你的图文语音多模态大模型

个人简介
在这里插入图片描述
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!

专栏导航

观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势

### 对Qwen2.5-VL-7B-Instruct进行微调的方法 对于Qwen2.5-VL-7B-Instruct模型的微调,可以借鉴LLaVA-Instruct-158K数据集上的训练参数设置。具体而言,在该数据集上执行微调时采用的学习率为2e-5,批处理大小设定为32,并且整个过程持续了3个epoch[^1]。 为了确保模型能够适应特定的任务需求并优化性能表现,建议采取以下措施: #### 数据准备 构建高质量的数据集至关重要。应收集与目标应用场景紧密关联的图像及其对应的描述或问答对作为训练样本。这些样例需具备足够的多样性以覆盖各种可能的情况,从而帮助模型更好地泛化到未见过的数据。 #### 训练配置调整 基于先前的经验教训,当涉及到视觉问答任务时,应当特别注意输入提示的设计。为了避免模型倾向于生成过短的回答,可尝试改进提示模板,使其更加精确地指导预期输出格式。例如,可以通过显式指定希望获得的具体信息量级来引导更详细的回应[^2]。 此外,考虑到不同组件之间的协作机制,如果计划利用多模态架构,则有必要评估各部分间的交互效果以及整体系统的稳定性。这或许意味着要探索不同于传统方式的新颖设计方案,比如引入混合变换器结构来增强跨模式融合的能力[^3]。 ```python from transformers import AutoModelForVision2Seq, AutoTokenizer, Trainer, TrainingArguments model_name = "Qwen/Qwen2.5-VL-7B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForVision2Seq.from_pretrained(model_name) training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=32, learning_rate=2e-5, logging_dir='./logs', ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, tokenizer=tokenizer, ) trainer.train() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

观熵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值