个人简介
作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与 Agent 架构设计。 热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。
我叫观熵。不是在控熵,就是在观测熵的流动
个人主页:观熵
个人邮箱:privatexxxx@163.com
座右铭:愿科技之光,不止照亮智能,也照亮人心!
专栏导航
观熵系列专栏导航:
AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到AI在行业中的落地应用,我们将深入剖析最前沿的AI技术,分享实用的开发经验,并探讨AI未来的发展趋势
AI开源框架实战:面向 AI 工程师的大模型框架实战指南,覆盖训练、推理、部署与评估的全链路最佳实践
计算机视觉:聚焦计算机视觉前沿技术,涵盖图像识别、目标检测、自动驾驶、医疗影像等领域的最新进展和应用案例
国产大模型部署实战:持续更新的国产开源大模型部署实战教程,覆盖从 模型选型 → 环境配置 → 本地推理 → API封装 → 高性能部署 → 多模型管理 的完整全流程
TensorFlow 全栈实战:从建模到部署:覆盖模型构建、训练优化、跨平台部署与工程交付,帮助开发者掌握从原型到上线的完整 AI 开发流程
PyTorch 全栈实战专栏: PyTorch 框架的全栈实战应用,涵盖从模型训练、优化、部署到维护的完整流程
深入理解 TensorRT:深入解析 TensorRT 的核心机制与部署实践,助力构建高性能 AI 推理系统
Megatron-LM 实战笔记:聚焦于 Megatron-LM 框架的实战应用,涵盖从预训练、微调到部署的全流程
AI Agent:系统学习并亲手构建一个完整的 AI Agent 系统,从基础理论、算法实战、框架应用,到私有部署、多端集成
DeepSeek 实战与解析:聚焦 DeepSeek 系列模型原理解析与实战应用,涵盖部署、推理、微调与多场景集成,助你高效上手国产大模型
端侧大模型:聚焦大模型在移动设备上的部署与优化,探索端侧智能的实现路径
行业大模型 · 数据全流程指南:大模型预训练数据的设计、采集、清洗与合规治理,聚焦行业场景,从需求定义到数据闭环,帮助您构建专属的智能数据基座
机器人研发全栈进阶指南:从ROS到AI智能控制:机器人系统架构、感知建图、路径规划、控制系统、AI智能决策、系统集成等核心能力模块
人工智能下的网络安全:通过实战案例和系统化方法,帮助开发者和安全工程师识别风险、构建防御机制,确保 AI 系统的稳定与安全
智能 DevOps 工厂:AI 驱动的持续交付实践:构建以 AI 为核心的智能 DevOps 平台,涵盖从 CI/CD 流水线、AIOps、MLOps 到 DevSecOps 的全流程实践。
C++学习笔记?:聚焦于现代 C++ 编程的核心概念与实践,涵盖 STL 源码剖析、内存管理、模板元编程等关键技术
AI × Quant 系统化落地实战:从数据、策略到实盘,打造全栈智能量化交易系统
🧩第一章:三款模型全局鸟瞰:GPT-4.1 家族的延迟 × 智力坐标系
如果你还停留在 GPT-3.5、GPT-4、GPT-4o 的理解框架里,那 GPT-4.1 的发布,可能会带来一次彻底的模型认知重塑。
这一次,OpenAI 不再只是发布“一个新模型”,而是构建了一个完整的 模型家族体系,并用官方发布的延迟-智力二维图,第一次清晰地表达出它的产品战略:
官网地址,大家可以参考
「多模型协同,而非单模型升级」
🎯 GPT-4.1 系列:不仅快、更聪明,也更便宜
GPT-4.1 系列家族包括三个不同定位的模型:
模型 | 定位 | 智力表现(MMLU) | 延迟 | 成本 | 适用场景 |
---|---|---|---|---|---|
GPT-4.1 | 全能旗舰 | 最强 | 中 | 中等 | 多轮对话、复杂Agent、长文档处理 |
GPT-4.1 Mini | 主力模型 | 中高 | 快 | 低 | 内容生成、RAG问答、多模态任务 |
GPT-4.1 Nano | 极致轻量 | 基础 | 极快 | 极低 | 分类、意图识别、边缘推理 |
而这三款模型之间的关系,不是「主力 vs 替代」,而是构成一个可组合的协同推理架构,如下图所示:
📊 图示:GPT-4.1 家族智力-延迟分布图
横轴代表推理延迟(越右越慢),纵轴代表“智力”表现,采用多语言MMLU(Multilingual Massive Multitask Language Understanding)标准评估。
可以看到:
- GPT-4.1 依旧是智力塔尖,但延迟高于 Mini 和 4o;