目录
一、全局沿着x轴随机翻转
x坐标不变,y取反,gt的方位角取反
def random_flip_along_x(gt_boxes, points):
"""
沿着x轴随机翻转
Args:
gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (M, 3 + C)
Returns:
"""
# 随机选择是否翻转 replace=False表示不可以取相同数字,p对应前面的概率
enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5])
if enable:
#沿着x轴随机翻转,x坐标不变,y取反,同时方位角定义的是与x轴的夹角
gt_boxes[:, 1] = -gt_boxes[:, 1] # y坐标翻转
gt_boxes[:, 6] = -gt_boxes[:, 6] # 方位角翻转,直接取负数,因为方位角定义为与x轴的夹角(这里按照顺时针的方向取角度)
points[:, 1] = -points[:, 1] # 点云y坐标翻转
return gt_boxes, points
二、全局沿着y轴随机翻转
y坐标不变,x取反,GT方位角加Π取反
def random_flip_along_y(gt_boxes, points):
"""
沿着y轴随机翻转
Args:
gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
points: (M, 3 + C)
Returns:
"""
# 随机旋转是否翻转
enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5])
if enable:
gt_boxes[:, 0] = -gt_boxes[:, 0] # x坐标翻转
gt_boxes[:, 6] = -(gt_boxes[:, 6] + np.pi) # 方位角加pi后,取负数(这里按照顺时针的方向取角度)
points[:, 0] = -points[:, 0] # 点云x坐标取反
return gt_boxes, points
三、全局沿着z轴随机旋转
先判断是不是tensor张量,不是就把numpy转tensor,构建旋转矩阵,torch.stack,再相乘,GT角度直接加
def check_numpy_to_torch(x):
# 检测输入数据是否是numpy格式,如果是,则转换为torch格式
if isinstance(x, np.ndarray):
return torch.from_numpy(x).float(), True
return x, False
def rotate_points_along_z(points, angle):
"""
Args:
points: (B, N, 3 + C)
angle: (B), angle along z-axis, angle increases x ==> y
Returns:
"""
# 首先利用torch.from_numpy().float将numpy转化为torch
points, is_numpy = check_numpy_to_torch(points)
angle, _ = check_numpy_to_torch(angle)
# 构造旋转矩阵batch个
cosa = torch.cos(angle)
sina = torch.sin(angle)
zeros = angle.new_zeros(points.shape[0])
ones = angle.new_ones(points.shape[0])
rot_matrix = torch.stack((
cosa, sina, zeros,
-sina, cosa, zeros,
zeros, zeros, ones
), dim=1).view(-1, 3, 3).float()
# 对点云坐标进行旋转
points_rot = torch.matmul(points[:, :, 0:3], rot_matrix)
# 将旋转后的点云坐标与原始额外特征拼接
points_rot = torch.cat((points_rot, points[:, :, 3:]), dim=-1)
# 将点云转化为numpy格式,并返回
return points_rot.numpy() if is_numpy else points_rot
def glob

本文介绍了针对点云数据的多种增强方法,包括沿不同轴的翻转和平移、全局及局部的旋转与缩放等操作,旨在提升点云数据集的质量和模型训练效果。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



