点云数据增强方法

本文介绍了针对点云数据的多种增强方法,包括沿不同轴的翻转和平移、全局及局部的旋转与缩放等操作,旨在提升点云数据集的质量和模型训练效果。

目录

一、全局沿着x轴随机翻转

二、全局沿着y轴随机翻转 

三、全局沿着z轴随机旋转 

四、过滤掉范围外的点云或获取GT内的点云

五、随机缩放 

六、全局沿xyz轴平移 

 七、GT沿xyz平移

八、对GT缩放

九、对GT旋转 


一、全局沿着x轴随机翻转

x坐标不变,y取反,gt的方位角取反

def random_flip_along_x(gt_boxes, points):
    """
    沿着x轴随机翻转
    Args:
        gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
        points: (M, 3 + C)
    Returns:
    """
    # 随机选择是否翻转      replace=False表示不可以取相同数字,p对应前面的概率
    enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5])
    if enable:
        #沿着x轴随机翻转,x坐标不变,y取反,同时方位角定义的是与x轴的夹角
        gt_boxes[:, 1] = -gt_boxes[:, 1]  # y坐标翻转
        gt_boxes[:, 6] = -gt_boxes[:, 6]  # 方位角翻转,直接取负数,因为方位角定义为与x轴的夹角(这里按照顺时针的方向取角度)
        points[:, 1] = -points[:, 1]  # 点云y坐标翻转


    return gt_boxes, points

二、全局沿着y轴随机翻转 

y坐标不变,x取反,GT方位角加Π取反

def random_flip_along_y(gt_boxes, points):
    """
    沿着y轴随机翻转
    Args:
        gt_boxes: (N, 7 + C), [x, y, z, dx, dy, dz, heading, [vx], [vy]]
        points: (M, 3 + C)
    Returns:
    """
    # 随机旋转是否翻转
    enable = np.random.choice([False, True], replace=False, p=[0.5, 0.5])
    if enable:
        gt_boxes[:, 0] = -gt_boxes[:, 0]  # x坐标翻转
        gt_boxes[:, 6] = -(gt_boxes[:, 6] + np.pi)  # 方位角加pi后,取负数(这里按照顺时针的方向取角度)
        points[:, 0] = -points[:, 0]  # 点云x坐标取反

    return gt_boxes, points

三、全局沿着z轴随机旋转 

先判断是不是tensor张量,不是就把numpy转tensor,构建旋转矩阵,torch.stack,再相乘,GT角度直接加

def check_numpy_to_torch(x):
    # 检测输入数据是否是numpy格式,如果是,则转换为torch格式
    if isinstance(x, np.ndarray):
        return torch.from_numpy(x).float(), True
    return x, False

def rotate_points_along_z(points, angle):
    """
    Args:
        points: (B, N, 3 + C)
        angle: (B), angle along z-axis, angle increases x ==> y
    Returns:

    """
    # 首先利用torch.from_numpy().float将numpy转化为torch
    points, is_numpy = check_numpy_to_torch(points)
    angle, _ = check_numpy_to_torch(angle)

    # 构造旋转矩阵batch个
    cosa = torch.cos(angle)
    sina = torch.sin(angle)
    zeros = angle.new_zeros(points.shape[0])
    ones = angle.new_ones(points.shape[0])
    rot_matrix = torch.stack((
        cosa,  sina, zeros,
        -sina, cosa, zeros,
        zeros, zeros, ones
    ), dim=1).view(-1, 3, 3).float()
    # 对点云坐标进行旋转
    points_rot = torch.matmul(points[:, :, 0:3], rot_matrix)
    # 将旋转后的点云坐标与原始额外特征拼接
    points_rot = torch.cat((points_rot, points[:, :, 3:]), dim=-1)
    # 将点云转化为numpy格式,并返回
    return points_rot.numpy() if is_numpy else points_rot

def glob
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CVplayer111

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值