【导读】MLLM 的训练范式大致可以划分为预训练阶段、指令微调阶段和对齐微调阶段。本文介绍预训练阶段(Pre-training),预训练目的是通过大量图文对将图片信息对齐到 LLM 的表征空间,即让 LLM 读懂视觉 Token。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】
一、预训练的目的
多模态大模型(MLLM)预训练的目的是对齐不同模态,并学习多模态世界知识。如 llava 第一阶段训练的目的是为了将图片信息映射到文本语义空间,让 LLM 能够理解图像内容。
注:本文介绍的是广义上的预训练,即完成不同模态之间的对齐,而非特指模型的全量训练。
二、预训练数据
2.1 数据格式
预训练阶段使用大规模文本配对数据,通常为图像、音频或视频的caption数据
用于构建image-text-pair数据的简化模板
下图是从 Flickr8k 中随机采样的 16 个图像文本对:
2.2 数据集
预训练语料库可以根据粒度分为粗粒度和细粒度图文对数据,表中总结了常用的预训练数据集。
粗粒度数据集具有大规模、简短嘈杂的特点,而细粒度数据通过使用高级MLLMs生成,虽然成本较高,但提供了更准确的图文对齐,ShareGPT4V项目展示了一种平衡成本和数据量的策略。
- 粗粒度数据:
-
方法:来源互联网,数据量大,描述简短且可能嘈杂。
-
代表数据集:
-
LAION-5B:5.85B图像-文本对,多语言,含2B英语子集。
-
LAION-COCO:从LAION-5B提取的600M英语图像,字幕合成自BLIP和CLIP。
-
CC-3M:3.3M图像-文本对,原始描述来自alt文本,经过复杂清洗流程,包括图像过滤、文本注释获取和启发式规则过滤,以及图像-文本对的标签匹配。
-
CC-12M:CC-3M的扩展,包含12.4M图像-字幕对,简化数据收集流程。
-
SBU Captions:1M图像-文本对,来自Flickr。
-
LAION系列:大规模网络数据集,图像和字幕来自互联网,经过文本长度、图像大小和去重等过滤步骤。
-
COYO-700M:747M图像-文本对,来自CommonCrawl,过滤策略包括图像和文本的格式、内容和长度要求,以及去除与公共数据集重叠的图像。
- 细粒度数据:
-
方法:使用强大的MLLMs(如GPT-4V)生成高质量细粒度数据。
-
优势:相比粗粒度数据,细粒度数据包含更长、更准确的图像描述,实现更精细的图文对齐。
-
挑战:成本较高,数据量较小,依赖商业MLLMs。
-
代表数据集:ShareGPT4V:通过先用GPT-4V生成的100K数据训练,再扩展到1.2M数据,平衡成本和数据量。
预训练数据集示例
三、代表模型-预训练阶段
这里介绍几种MLLM模型在预训练阶段的数据和训练策略:
3.1 LLaVA
1. 数据
LLaVA 预训练阶段的数据为LLaVA Visual Instruct CC3M Pretrain 595K, 是 CC-3M 数据集的子集,通过一系列手段筛选出595K图像-文本对用于训练。
LLaVA Visual Instruct CC3M Pretrain 595K
2. 特征对齐预训练
由于从CLIP提取的特征与word embedding不在同一个语义表达空间,因此,需要通过预训练,将image embedding对齐到text word embedding的语义表达空间。这个阶段冻结Vision Encoder和LLM模型的权重参数,只训练插值层Adapter的权重。
llava 的 pre-training 阶段
3.2 VILA
《VILA: On Pre-training for Visual Language Models》是NVIDIA和MIT提出的一个工作,文中对视觉语言模型预训练的有效机制进行了一些总结,并提出了一系列视觉语言的大模型VILA(Visual Language)。
1. 预训练数据
2. 训练
和LLaVA系列差不多,模型的训练包含三个阶段,如图所示:
-
Projector init:LLM 和 ViT 都是单独训练的,连接 LLM 和 ViT 的 Projector 是随机初始化的,所以这个阶段首先对 Projector 做训练
-
Interleaved pre-training:对 LLM 和 Projector 进行训练
-
Vision-text joint SFT:对预训练模型进行视觉指令微调
VILA: On Pre-training for Visual Language Models
模型指标如下,本文得出结论:
-
LLM冻结与更新:在预训练过程中,冻结大型语言模型(LLM)可以实现不错的零样本(zero-shot)性能,但缺乏上下文学习能力(in-context learning capability)。为了获得更好的上下文学习能力,需要对LLM进行更新。实验表明,更新LLM有助于在更深层次上对齐视觉和文本的潜在嵌入,这对于继承LLM的上下文学习能力至关重要。
-
交错预训练数据:交错的视觉语言数据(如MMC4数据集)对于预训练是有益的,而仅使用图像-文本对(如COYO数据集)则不是最佳选择。交错数据结构有助于模型在保持文本能力的同时,学习与图像相关的信息。
3.3 InternVL
1. 预训练数据集
2. 训练
-
视觉-语言对比训练:进行对比学习,将InternViT-6B与多语言LLaMA-7B在网络规模上的嘈杂图像文本对进行对齐
-
视觉-语言生成训练:QLLaMA在第一阶段继承了LLaMA-7B的权重。我们保持InternViT-6B和QLLaMA冻结,仅训练新添加的可学习查询和交叉注意力层。
-
有监督微调:为了强化对话、问答能力,通过MLP层将其与现成的LLM解码器(如Vicuna或InternLM)连接,并进行监督微调
3.4 Qwen-VL
1. 预训练数据
1)stage1-预训练数据
2)stage2-多任务预训练数据
2. 训练
-
Stage1 为预训练,目标是使用大量的图文Pair对数据对齐视觉模块和LLM的特征,这个阶段冻结LLM模块的参数;
-
Stage2 为多任务预训练,使用更高质量的图文多任务数据(主要来源自开源VL任务,部分自建数据集),更高的图片像素输入,全参数训练;
-
Stage3 为指令微调阶段,这个阶段冻结视觉Encoder模块,使用的数据主要来自大模型Self-Instruction方式自动生成,目标是提升模型的指令遵循和多轮对话能力。
最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】