1. 泰勒展开
泰勒展开是一种用多项式近似复杂函数的数学方法,其核心思想是通过函数在某一点的各阶导数信息,构建一个多项式来逼近原函数,即通过函数在某一点x0的各阶导数值,构造一个多项式 P(x),使得该多项式在 x0 附近与原函数 f(x) 的值及其导数尽可能匹配,数学形式为:
f
(
x
)
=
∑
0
∞
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
f(x)=\sum_0^\infty\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n
f(x)=∑0∞n!f(n)(x0)(x−x0)n
1. 意义与用途
- 意义:泰勒展开的核心思想是用多项式逼近复杂函数,阶数越高精度越好,但计算复杂度也增加。不同场景下选择适当阶数的展开(如一阶用于梯度下降,二阶用于牛顿法),并需结合余项分析误差范围。
- 简化复杂函数 :将指数函数、三角函数等难以计算的函数转化为多项式形式,便于数值计算。
- 局部近似 :将非线性问题线性化。
- 误差估计 :通过余项(如拉格朗日余项)量化近似误差,确保计算精度。
- 唯一性 :在相同阶数和展开点下,泰勒多项式是唯一的。
2. 展开公式
- 直接展开法 :计算函数在展开点 x0 的各阶导数 f(x0),代入泰勒公式,逐项写出多项式
- 间接展开法 :利用已知展开式,通过代数运算或复合函数展开。
- 指数函数: e x = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + . . . = ∑ 0 ∞ x n n ! e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+...=\sum_0^\infty\frac{x^n}{n!} ex=1+x+2!x2+3!x3+4!x4+...=∑0∞n!xn
- 正弦函数: s i n ( x ) = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + . . . = ∑ 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! sin(x) = x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...=\sum_0^\infty(-1)^n\frac{x^{2n+1}}{(2n+1)!} sin(x)=x−3!x3+5!x5−7!x7+...=∑0∞(−1)n(2n+1)!x2n+1
- 余弦函数: c o s ( x ) = x − x 2 2 ! + x 4 4 ! − x 6 6 ! + . . . = ∑ 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! cos(x) = x-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+...=\sum_0^\infty(-1)^n\frac{x^{2n}}{(2n)!} cos(x)=x−2!x2+4!x4−6!x6+...=∑0∞(−1)n(2n)!x2n
- 自然对数函数: l n ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + . . . = ∑ 0 ∞ ( − 1 ) n + 1 x n n ln(1+x)= x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...=\sum_0^\infty(-1)^{n+1}\frac{x^n}{n} ln(1+x)=x−2x2+3x3−4x4+...=∑0∞(−1)n+1nxn ( ∣ x ∣ < 1 ) (|x|<1) (∣x∣<1)
- 几何级数: 1 1 − x = 1 + x + x 2 + x 3 + x 4 + . . . = ∑ 0 ∞ x n \frac{1}{1-x}=1+x+x^2+x^3+x^4+...=\sum_0^\infty x^n 1−x1=1+x+x2+x3+x4+...=∑0∞xn ( ∣ x ∣ < 1 ) (|x|<1) (∣x∣<1)
- 1 x = 1 − ( x − 1 ) + ( x − 1 ) 2 − ( x − 1 ) 3 + ( x − 1 ) 4 + . . . = ∑ 0 ∞ ( − 1 ) n ( x − 1 ) n \frac{1}{x}=1-(x-1)+(x-1)^2-(x-1)^3+(x-1)^4+...=\sum_0^\infty(-1)^n(x-1)^n x1=1−(x−1)+(x−1)2−(x−1)3+(x−1)4+...=∑0∞(−1)n(x−1)n ( 0 < x ≤ 2 ) (0<x≤2) (0<x≤2)
- 1 + x = 1 + x 2 − x 2 8 + x 3 16 − . . . \sqrt{1+x}=1+\frac x 2-\frac{x^2}{8}+\frac{x^3}{16}-... 1+x=1+2x−8x2+16x3−...
3. 常用概念解释
- 泰勒公式:泰勒公式的有限形式,包含多项式部分和余项(如拉格朗日余项或佩亚诺余项),用于近似计算和误差估计,就是会有余项,多用在极限计算和中值定理。
- 泰勒级数:只要一个函数在某一点无限可导,通过函数在该点的导数信息,构建多项式来逼近该函数,本质是用简单的多项式无限逼近复杂函数,那么泰勒级数就存在,但级数存在不一定收敛,即使收敛也可能不等于原函数,具体来说,若函数 f(x) 在点 a 处无限可导,则其在点a处的泰勒级数展开式为:
f ( x ) = ∑ n = 0 ∞ f ( n ) ( a ) n ! ( x − a ) n f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^n f(x)=∑n=0∞n!f(n)(a)(x−a)n - 麦克劳林级数:当展开点 a=0 时,泰勒级数称为麦克劳林级数(Maclaurin Series),是泰勒级数的特例。
- 泰勒多项式:泰勒级数的前有限项称为泰勒多项式(如一阶泰勒多项式即线性近似),常用于局部近似复杂函数,简化计算。
- 泰勒展开式:从函数变成级数的方向,要求级数必须收敛,并且必须收敛于被展开函数在对应点所取到的函数值。
- 一阶泰勒展开:仅保留一阶导数的近似形式,常用于线性逼近函数变化,如梯度下降法中通过一阶展开推导更新方向,形式: f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) f(x)≈f(a)+f^{'}(a)(x-a) f(x)≈f(a)+f′(a)(x−a)
- 二阶泰勒展开:包含二阶导数的二次逼近,适用于更精确的局部逼近,如牛顿法中的曲率修正,形式如下:
f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ( x − a ) 2 f(x)≈f(a)+f^{'}(a)(x-a)+\frac{f^{''}(a)}{2}(x-a)^2 f(x)≈f(a)+f′(a)(x−a)+2f′′(a)(x−a)2 - 拉格朗日展开式:通常指泰勒公式中带有拉格朗日余项 的展开形式,是泰勒定理的一种具体表现。其核心思想是用多项式逼近函数,并通过余项量化误差