SLAM非线性优化

本文探讨了SLAM(Simultaneous Localization And Mapping)中的非线性最小二乘优化问题,包括一阶和二阶梯度法、高斯牛顿法以及列文伯格——马夸尔特方法。通过泰勒展开和迭代过程,寻找优化变量的最小化增量,这些方法在局部近似有效的情况下工作良好,但面临如矩阵非奇异、病态等问题。高斯牛顿法通过JJT近似二阶Hessian矩阵,而列文伯格——马夸尔特方法通过信赖区域解决了矩阵非奇异和病态的挑战,提供了更稳定的增量解。
摘要由CSDN通过智能技术生成


非线性最小二乘

  简单的最小二乘问题:
min ⁡ x F ( x ) = 1 2 ∥ f ( x ) ∥ 2 2 . \min_xF(x) = \frac{1}{2} \lVert f(x)\rVert_2^2. xminF(x)=21f(x)22.
其中,自变量 x ∈ A n x \in \mathbb{A}^n xAn f f f是任意标量非线性函数 f ( x ) : R n ↦ R f(x):\mathbb{R}^n \mapsto \mathbb{R} f(x):RnR。这里的系数 1 2 \frac{1}{2} 21 无关紧要的,它不会影响之后的结论。如果 f f f是个数学形式上很简单的函数,那么这样一个优化问题可以用解析形式来求。令目标函数的倒数为零,然后求解 x x x的最优值,和求二元函数的极值一样:
d F d x = 0. \frac{dF}{dx} = 0. dxdF=0.
解此方程,就得到了导数为零处的极值。它们可能是极大、极小或鞍点处的值,只要逐个比较它们的函数值大小即可。如果 f f f为简单的线性函数,那么这个问题就是简单的线性最小二乘问题,但是如果 f f f的导函数形式复杂,那么求解这个方程需要我们知道关于目标函数的全局性质。对于不便直接求解的最小二乘问题,我们采用迭代的方式,从一个初始值出发,不断地更新当前的优化变量,使目标函数下降。具体步骤如下:

  1. 给定某个初始值 x 0 x_0 x0
  2. 对于第 k k k次迭代,寻找一个增量 Δ x k \Delta x_k Δxk,使得 ∣ ∣ f ( x k + Δ x k ) ∣ ∣ 2 2 ||f(x_k + \Delta x_k)||^2_2 f(xk+Δxk)22达到极小值。
  3. Δ x k \Delta x_k Δxk足够小,则停止。
  4. 否则,令 x k + 1 = x k + Δ x x_{k+1} = x_k + \Delta x xk+1=xk+Δx,返回第二步。

这让求解导函数为零的问题变成了一个不断寻找下降增量 Δ x k \Delta x_k Δxk 的问题。当函数下降到增量非常小的时候,就认为算法收敛,目标函数达到了一个极小值。


一阶和二阶梯度法

  现在考虑第 k k k次迭代,假如我们在 x k x_k xk处,想要寻到增量 Δ x k \Delta x_k Δxk,那么最直观的方式是将目标函数在 x k x_k xk附近进行泰勒展开:
F ( x k + Δ x k ) ≈ F ( x k ) + J ( x k ) T Δ x k + 1 2 Δ x k T H ( x k ) Δ x k . F(x_k + \Delta x_k) \approx F(x_k) + \mathnormal{J}(x_k)^T \Delta x_k + \frac{1}{2} \Delta x_k^T \mathnormal{H}(x_k) \Delta x_k. F(xk+Δxk)F(xk)+J(xk)TΔxk+21ΔxkTH(x

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值