YOLOv11改进 | 独家创新- 注意力篇 | YOLOv11引入ECA和Softmax Attention结合之SECA注意力(全网独家创新)

1. SECA介绍

          SECA(Scale-wise Attention)和ECA(Enhanced Channel Attention)都是用于增强神经网络在图像特征提取过程中的性能的注意力机制。它们在如何整合空间信息和通道信息上有所不同。

          SECA(Scale-wise Attention)

         SECA注意力机制结合了两种注意力机制:ECA和Softmax Attention。其主要优势在于以下几点:

         (1). 多尺度信息融合:SECA首先使用了ECA模块,通过全局平均池化获取特征图的全局空间信息,然后利用卷积操作增强了特征图的不同尺度信息,使得模型可以更有效地捕获不同尺度下的特征。

          (2). Softmax Attention:SECA进一步引入了Softmax Attention机制,通过学习得到的权重来动态调整特征图中每个位置的重要性,从而更加精确地聚焦于图像中不同区域的关键特征。

          (3). 全局特征加权:SECA在进行Softmax Attention时,利用了全连接层来学习特征图中每个位置的权重,这种全局特征加权的方式能够有效地提升模型在复杂场景下的表现。

          (4). 适应性强:由于SECA同时考虑了全局和局部的特征信息,并且通过学习得到的权

### 集成ECA模块的YOLOv11目标检测模型 为了实现带有ECA注意力机制的目标检测模型,需按照特定流程修改YOLOv11源码。具体操作涉及编辑`block.py`文件以加入ECA模块,并调整训练配置参数。 #### 修改Block.py 文件 在路径 `YOLOv8/ultralytics-main/ultralytics/nn/modules/block.py` 中定位至适当位置(通常为第64行附近),插入如下Python代码片段用于定义ECA层: ```python class ECAAttention(nn.Module): """Constructs an ECA module. Args: k_size (int): Size of the convolution kernel. Default: 3 """ def __init__(self, channel, k_size=3): super(ECAAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d( 1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False, ) self.sigmoid = nn.Sigmoid() def forward(self, x): # feature descriptor on the global spatial information y = self.avg_pool(x) # Two different branches of ECA module y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1) # Multi-scale information fusion y = self.sigmoid(y) return x * y.expand_as(x) ``` 此部分实现了ECA注意力机制的核心逻辑[^2]。 #### 更新Task.Py Parse_Model 函数 随后,在`task.py`中引入新的ECA类,并更新`parse_model()`函数来支持该组件。当解析到ECA节点时,设置输入通道数量等于前一层特征图的数量: ```python elif isinstance(m, models.common.ECAAttention): c1 = ch[f] ``` 这段代码确保了在网络构建过程中能够正确处理ECA层实例化所需的信息。 #### 训练配置与启动脚本 最后一步是在主程序入口处指定自定义配置文件以及相关超参数设定。以下是完整的Python脚本示例,展示了如何加载预设好的YAML格式数据集描述符并调用`.train()`接口开始训练过程: ```python import warnings from ultralytics import YOLO if __name__ == '__main__': model = YOLO(r'D:\yolo\yolov11\ultralytics-main\datasets\yolo11ECA.yaml') model.train( data=r'D:\yolo\yolov11\ultralytics-main\datasets\data.yaml', cache=False, imgsz=640, epochs=100, single_cls=False, batch=8, close_mosaic=10, workers=0, device='0', optimizer='SGD', amp=True, project='runs/train', name='exp' ) ``` 通过上述步骤可以成功搭建基于YOLOv11框架且融合了ECA注意力机制的对象识别系统[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值