1. SECA介绍
SECA(Scale-wise Attention)和ECA(Enhanced Channel Attention)都是用于增强神经网络在图像特征提取过程中的性能的注意力机制。它们在如何整合空间信息和通道信息上有所不同。
SECA(Scale-wise Attention)
SECA注意力机制结合了两种注意力机制:ECA和Softmax Attention。其主要优势在于以下几点:
(1). 多尺度信息融合:SECA首先使用了ECA模块,通过全局平均池化获取特征图的全局空间信息,然后利用卷积操作增强了特征图的不同尺度信息,使得模型可以更有效地捕获不同尺度下的特征。
(2). Softmax Attention:SECA进一步引入了Softmax Attention机制,通过学习得到的权重来动态调整特征图中每个位置的重要性,从而更加精确地聚焦于图像中不同区域的关键特征。
(3). 全局特征加权:SECA在进行Softmax Attention时,利用了全连接层来学习特征图中每个位置的权重,这种全局特征加权的方式能够有效地提升模型在复杂场景下的表现。
(4). 适应性强:由于SECA同时考虑了全局和局部的特征信息,并且通过学习得到的权