mobilenet v1结构介绍

本文详细介绍了MobileNetV1中使用的深度可分离卷积模块的实现,包括其结构、代码示例以及计算量分析。作者构建了一个MobilnetV1Block类,展示了如何构建并执行这种轻量级网络结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

mobilenet v1

mobilenetv1中的深度可分离卷积模块

在这里插入图片描述
mobilenetv1完整结构:
在这里插入图片描述

计算量

在这里插入图片描述

参考:MobileNetv1论文详解.md

代码:

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
from torch import flatten

class MobilnetV1Block(nn.Module):
    """Depthwise conv + Pointwise conv"""

    def __init__(self, in_channels, out_channels, stride=1):
        super(MobilnetV1Block, self).__init__()
        # dw conv kernel shape is (in_channels, 1, ksize, ksize)
        self.dw = nn.Sequential(
            nn.Conv2d(in_channels, 64, kernel_size=3,
                      stride=stride, padding=1, groups=4, bias=False),
            nn.BatchNorm2d(in_channels),
            nn.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值