如何看待DNA双螺旋结构被发现的过程?


 

DNA作为遗传信息的载体储存着生物的遗传密码,今天我们对DNA的双螺旋结构已经了如指掌。但在探索揭示这一结构的过程中有一些令人深思的故事。

早在20世纪50年代美国生化学家查盖夫(E.Chargaff)不迷信前人的结果,敢于质疑,并利用层析和紫外吸收光谱法对不同生物DNA的碱基组成进行了精确的定量测定,推翻了前人的四核苷酸假说,从而得出重要的结论,总结出以下规律:DNA的组成成分中,腺嘌呤和胸腺嘧啶的摩尔数相等,即A=T;鸟嘌呤和胞嘧啶的摩尔数相等,即G=C;不同生物种属的DNA碱基组成不同;同一个体不同器官不同组织的碱基组成相同。此规律称之为Chargaff 规则。这是碱基配对的重要证据,但遗憾的是他没有给出合理的解释。

英国物理化学家与晶体学家富兰克林(R.Franklin)和维尔金森(M.Wilkins)两位科学家在DNA的晶体X射线衍射方面作出了卓越贡献,特别是富兰克林在1951年11所得到的高质量的DNA分子X线衍射图是双螺旋模型的重要证据。但是同样遗憾的是她没有首先发表自己的数据,作为DNA化学结构的第一发现者,富兰克林的论文却只能作为DNA双螺旋的一个补充证据,从而与诺贝尔奖擦肩而过。后来克里克在一篇纪念DNA结构发现40周年的文章中说道:“富兰克林的贡献没有受到足够的肯定,她清楚地阐明两种型态的DNA,并且定出A型DNA的密度、大小与对称性。”

20世纪50年代沃森(J.Watson)和克里克(F.Crick)两位年轻人是在查盖夫和富兰克林等人工作的基础上为揭示DNA空间结构的奥秘开始了密切合作。克里克与沃森认为:当时的X射线晶体衍射技术水平尚不足以清晰显示生物大分子较为复杂的三维图像,仅靠数学计算难以确定大分子中所有原子的准确位置。如果设想DNA分子呈螺旋状,则可以依据X射线衍射图上的几组数据,先构建出分子模型的基本形态,再不断调整其中原子排列的位置细节,直到其与真实分子的衍射图十分接近为止。此时得到的即应是DNA的实际立体结构模式。经过了两年来缜密的思考和严密的推断,最终两人在提出了DNA 的二级结构—双螺旋模型,于1953年4月25日发表于《Nature》杂志。这一发现揭示了生物遗传性状得以世代相传的分子机制,它不仅解释了当时已知的DNA理论性质,还将DNA的功能与结构联系起来,奠定了现代生命的科学基础,从而开创了分子生物学的时代。J.Watson、F.Crick和M.Wilkins因此分享了1962年的诺贝尔生理学/医学奖。

### DNA双螺旋结构路径规划算法 #### 利用DNA双螺旋特性的路径规划方法 在生物信息学领域,针对DNA双螺旋结构设计的路径规划算法主要依赖于DNA分子的独特属性。这些算法通常用于模拟和优化涉及DNA链的各种过程,如复制、重组以及修复等。 对于基于DNA双螺旋结构的路径规划问题,可以考虑将其转化为图论中的最短路径或最小生成树等问题求解。具体来说: - **节点表示**:将每一对碱基视为图的一个顶点; - **边权重定义**:依据相邻碱基之间的氢键数量或其他相互作用力设定边权值; - **目标函数构建**:根据不同应用场景设置不同的成本度量标准,比如能量消耗最低、稳定性最高或是反应速度最快等。 为了更精确地描述这一类问题,在实际建模过程中还可以引入更多因素,例如温度效应、溶液环境pH值等因素的影响。此外,考虑到DNA链可能存在多种构象状态,因此还需要综合考量不同状态下各条可能路径的概率分布情况[^1]。 ```python import networkx as nx def create_dna_graph(dna_sequence): G = nx.Graph() # Add nodes and edges based on base pairing rules for i in range(len(dna_sequence)): current_base = dna_sequence[i] if current_base == 'A': paired_with = 'T' elif current_base == 'C': paired_with = 'G' else: continue next_index = (i + 1) % len(dna_sequence) while True: opposite_base = dna_sequence[next_index] if opposite_base.upper() == paired_with: break next_index += 1 weight = calculate_hydrogen_bonds(current_base, opposite_base) G.add_edge(i, next_index, weight=weight) return G def find_optimal_path(G, start_node, end_node): path = nx.dijkstra_path(G, source=start_node, target=end_node) cost = sum([G[u][v]['weight'] for u,v in zip(path[:-1],path[1:])]) print(f"The optimal path from node {start_node} to node {end_node}: ", path) print("Total Cost:",cost) # Example usage with a hypothetical sequence "ACGT" dna_seq = ["A", "C", "G", "T"] graph_model = create_dna_graph(dna_seq) find_optimal_path(graph_model, 0, 3) ``` 此代码片段展示了如何创建一个简单模型来表征给定DNA序列上的最优路径查找问题。这里假设了一个非常简化的情况——仅考虑四种核苷酸及其经典配对规则,并忽略了其他潜在影响因素(如空间位阻)。实际上,真实世界里的DNA分子远比这复杂得多,所以在应用于实际情况之前还需进一步完善该框架[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wangchuang2017

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值