Transformer BEV 3D object detection

传统方案:利用2D模型在各自的相机视角获取3D检测结果。再通过后处理算法将各个视角的3D检测框投影到ego frame,融合到一起。这样的做法简单有效,但也有如下缺点:

  1. 将多视角融合的步骤排除在模型学习之外,导致其难以检测相邻环视相机重叠部分中被截断的物体。
  2. 难以实现与3D点云传感器(LiDAR)的数据级/特征级融合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值