相机、imu 标定 简介

本文介绍了IMU的校准和建模,旨在确保加速度测量的精确性,通过航位推算减少误差。同时,详细阐述了相机的几何校准和光学校准,以实现摄像头像素与现实世界的精确映射,提升AR追踪系统的性能。
摘要由CSDN通过智能技术生成

惯性校准
对于 IMU,重点在于它所测量的是加速度,而非距离或速率。IMU 读数的误差会逐渐累积,累积速度极快!
校准和建模的目的在于确保每秒钟的 X 等分时间段内,对于距离的测量(对加速度进行二重积分)是足够精确的。
理想情况下,这段时间已经足够长,可以抵消由于镜头被遮挡或场景中其他情况导致追踪过程漏掉几帧画面所造成的影响。

使用 IMU 测量距离的方法也叫航位推算。基本上这就是一种猜测,但只要对 IMU 行为建模,确定误差的所有累积方式,随后编写可以缓解这些误差的筛选器,即可获得准确的猜测结果。
假设你要迈出一步并猜测这一步的长度,只迈一步并猜一次的误差肯定会很高。但如果重复迈出上千步,每一步都进行测量,同时确定迈出的到底是左脚还是右脚、地板材质、穿的鞋子、移动的速度、疲倦程度等因素,那么最终的猜测结果将变得非常准确。
IMU 校准和建模实际上就是做这种事情的。

误差的来源有很多。厂商通常会使用机器臂以相同方式反复移动设备,持续捕获并筛选 IMU 输出结果,直到 IMU 的输出能与机器臂移动过程的地表实况(ground truth)精确匹配。
为了进一步消除误差,Google 和微软甚至在国际空间站以及“零重力飞机”的微重力环境下进行过设备校准。


-----------------
相机校准
为了让软件精确地将摄像头传感器像素与现实世界中的一点关联在一起,摄像头系统必须进行精确的校准。校准主要可分为两种类型:

几何校准(Geometric Calibration):使用相机的小孔成像(Pinhole model)模式矫正镜头视野以及镜头圆筒效应(Barrel effect&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值