向量点乘在图形学中的作用

如下:

1.找到两个向量之间的夹角(不用多说)

2.求一个向量投影在另一个向量的投影:

我们把图中b的在a上的投影向量称作b1吧,因为b1就在a上,所以只需要求出b1的大小,然后乘以a的单位向量,我们就得到向量b1了。b1的大小刚好等于b的模长乘以夹角余弦。

求得投影向量后,我们很容易得到一个垂直于a的向量:b-b1:

利用投影可以将一个向量分解成两个互相垂直的向量。

3. 判断两个向量方向是基本相同还是基本相反:

图中a点乘b大于0,称a和b方向趋于相同, a点乘c小于0,a和c的方向趋于相反。点乘结果等于0的话两个向量垂直。

 4.可以算出这两个向量的方向是接近还是远离(和第三条相同):

点乘结果与1相近两个向量夹角小,两个向量也就比较接近,点乘结果接近-1则两个向量夹角接近180度,两个向量远离。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值