传统手工特征方法整理--LBP,HAAR,SIFT,HOG,ORB,SURF

### 不同图像特征描述符和检测算法的比较 #### HOG (方向梯度直方图) HOG 特征通过计算和统计图像局部区域的梯度方向直方图来构建特征。该方法首先将图像划分为小的空间区域(cell),然后在这些区域内计算像素强度变化的方向分布情况。为了提高鲁棒性,通常会对相邻的小块进行归一化处理[^3]。 对于目标识别任务而言,HOG 提取出来的特征能够很好地捕捉到物体边缘轮廓信息,在行人检测等领域表现优异。然而需要注意的是,原始版本的 HOG 并不具备尺度和平移不变形特性;不过可以通过多分辨率分析等方式加以改进[^4]。 ```python import cv2 hog = cv2.HOGDescriptor() descriptor = hog.compute(image) ``` #### SIFT (尺度不变特征变换) SIFT 是一种基于尺度空间极值点定位的关键点检测器以及对应的描述子生成方式。它能够在不同尺度下稳定地找到显著位置,并利用邻域内的灰度梯度方向直方图作为描述向量。这使得 SIFT 对光照条件、视角改变等因素具有较强的适应能力[^1]。 由于专利保护的原因,在实际项目开发过程中可能会受到一定限制。但是其优秀的性能仍然使其成为许多研究工作的基础之一。 ```python sift = cv2.SIFT_create() keypoints, descriptors = sift.detectAndCompute(gray_image, None) ``` #### SURF (加速稳健特征) SURF 旨在加快 SIFT 的运算速度并保持相似甚至更好的效果。具体来说,SURF 使用了 Haar 小波响应代替传统的高斯差分滤波来进行兴趣点检测,并简化了后续步骤中的参数估计过程。因此可以在更短时间内完成大规模数据集上的特征提取工作[^2]。 尽管如此,SURF 同样面临版权问题的影响,所以在开源软件里并不常见。 ```python surf = cv2.xfeatures2d.SURF_create(400) kp_surf, des_surf = surf.detectAndCompute(img, None) ``` #### ORB (Oriented FAST and Rotated BRIEF) ORB 结合了 FAST 角点检测与 BRIEF 描述子的优点,同时还引入了一些额外机制以增强旋转不变性和抗噪能力。相比于前两者,ORB 更加轻量化且易于实现,非常适合嵌入式设备或资源受限环境下的应用场景。 此外,ORB 完全开放源码,不存在知识产权纠纷的风险。 ```python orb = cv2.ORB_create() kp_orb, des_orb = orb.detectAndCompute(img, None) ``` #### LBP (局部二值模式) LBP 主要关注于纹理特性的表达,通过对中心像素周围邻居关系编码形成固定长度的二进制串。这种简单的操作却能有效反映局部结构差异,广泛应用于人脸识别等方面。而且因为计算成本低廉而备受青睐。 值得注意的是,标准版 LBP 缺乏平移和缩放不变性质,但在特定条件下仍可取得良好结果。 ```python lbp = local_binary_pattern(image, P=8, R=1, method="uniform") histogram = np.histogram(lbp.ravel(), bins=np.arange(0, lbp.max() + 2), density=True)[0] ``` #### HAAR 特征 HAAR 特征最初是为了快速人脸检测设计的一类矩形特征集合。它们由若干个白色和黑色条带组成,分别对应正负权重区域。当应用至滑动窗口框架内时,可以高效地区分前景对象与其他背景部分。 虽然 HAAR 在早期阶段取得了巨大成功,但由于缺乏足够的灵活性难以应对复杂场景的变化需求,逐渐被其他更为先进的技术所取代。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈 洪 伟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值