信号与系统(5)- 举例求解线性时不变系统的全响应

信号与系统(5)- 举例求解线性时不变系统的全响应

通过之前的连续时间系统时域分析1连续时间系统时域分析2可知,系统对特定输入信号的响应可以分解为求解零输入响应和求解零状态响应。其中求解零输入响应使用求解微分方程的经典法,求解零状态响应则相对复杂,需要先将输入信号分解用某种子信号表示,再求解子信号的响应,最后利用卷积,将子信号的响应进行叠加,从而求得原输入信号的响应。

这一部分将举例说明如何求解连续时间系统的零状态响应以及全响应,并对求解方法做出简单总结。

1. 求解以下系统的零输入响应和零状态响应

RC电路如图所示,设 R = 1 Ω , C = 1 F R=1\Omega,C = 1F R=1ΩC=1F, 电源电压为 e ( t ) = ( 1 + e − 3 t ) u ( t ) e(t)=(1+e^{-3t})u(t) e(t)=(1+e3t)u(t)。电容上的初始电压为 u c ( 0 − ) = 1 V u_c(0^-)=1V uc(0)=1V,求电容上的响应电压 u c ( t ) u_c(t) uc(t)

1). 求解系统的零输入响应 r z i r_{zi} rzi

列出上述系统的微分方程:
u c ( t ) + R C d d t u c = u s u_c(t) + RC\frac{d}{dt}u_c=u_s uc(t)+RCdtduc=us
其中 u s ( t ) u_s(t) us(t)表示激励信号,微分算子表示上式得:
u c ( t ) + R C ⋅ p ⋅ u c ( t ) = u s ( t ) u_c(t)+RC\cdot p \cdot u_c(t) = u_s(t) uc(t)+RCpuc(t)=us(t)
其中 p = d d t p = \frac{d}{dt} p=dtd,是微分算子表示的微分。

通过算子形式的微分方程可以获得其特征方程和特征根:
     u c ( t ) ⋅ ( 1 + R C p ) = u s ( t ) ⇒ 传 输 函 数 为 : H ( p ) = 1 R C p + 1 R C ⇒ 特 征 方 程 为 : p + 1 R C = 0 ⇒ 特 征 根 为 : λ = − 1 R C \begin{aligned} & \space \space\space\space u_c(t) \cdot (1+RCp)=u_s(t) \\& \Rightarrow 传输函数为:H(p) = \frac{\frac{1}{RC}}{p+\frac{1}{RC}} \\& \Rightarrow 特征方程为:p+\frac{1}{RC} =0 \\ &\Rightarrow 特征根为:\lambda=-\frac{1}{RC} \end{aligned}     uc(t)(1+RCp)=us(t)H(p)=p+RC1RC1p+RC1=0λ=RC1
由于只有一个特征根,因此微分方程的通解,即系统的零输入响应 r z i r_{zi} rzi的形式解为:
r z i = A e − 1 R C t , A 为 待 定 系 数 r_{zi}=Ae^{-\frac{1}{RC}t}, A为待定系数 rzi=AeRC1t,A
由初始条件 u c ( 0 − ) = 1 V u_c(0^-)=1V uc(0)=1V,即电路参数 R = 1 Ω , C = 1 F R=1\Omega,C = 1F R=1ΩC=1F可知:
A = 1 A = 1 A=1
因此完整的系统零输入响应为
r z i = e − t r_{zi}=e^{-t} rzi=et
2). 求解系统的零状态响应 r z s r_{zs} rzs

首先求解冲激函数 δ ( t ) \delta(t) δ(t)的响应 h ( t ) h(t) h(t)
h ( t ) = H ( p ) ⋅ δ ( t ) h(t) = H(p) \cdot \delta(t) h(t)=H(p)δ(t)
由之前的求解过程可知:
H ( p ) = 1 R C p + 1 R C = 1 p + 1 H(p)= \frac{\frac{1}{RC}}{p+\frac{1}{RC}} = \frac{1}{p+1} H(p)=p+RC1RC1=p+11
所以
h ( t ) = 1 p + 1 ⋅ δ ( t ) h(t) = \frac{1}{p+1} \cdot \delta(t) h(t)=p+11δ(t)
由于 H ( p ) H(p) H(p)的特征根没有重根,且 H ( p ) H(p) H(p)的分子最高阶数大于分子最高阶数,通过连续时间系统时域分析2中Heaviside分部分解法可知,当特征方程没有重根时,若
H ( p ) = k 1 ( p − λ 1 ) + k 2 ( p − λ 2 ) + ⋯ + k n ( p − λ n ) H(p)=\frac{k_1}{(p-\lambda_1)}+\frac{k_2}{(p-\lambda_2)}+\cdots +\frac{k_n}{(p-\lambda_n)} H(p)=(pλ1)k1+(pλ2)k2++(pλn)kn

h ( t ) = H ( p ) δ ( t ) = [ k 1 ( p − λ 1 ) + k 2 ( p − λ 2 ) + ⋯ + k n ( p − λ n ) ] δ ( t ) = k 1 e λ 1 t ε ( t ) + k 2 e λ 2 t ε ( t ) + ⋯ + k n e λ n t ε ( t ) \begin{aligned} h(t)&=H(p)\delta(t) =[\frac{k_1}{(p-\lambda_1)}+\frac{k_2}{(p-\lambda_2)}+\cdots +\frac{k_n}{(p-\lambda_n)}]\delta(t) \\&=k_1e^{\lambda_1t}\varepsilon(t)+k_2e^{\lambda_2t}\varepsilon(t)+\cdots+k_ne^{\lambda_nt}\varepsilon(t) \end{aligned} h(t)=H(p)δ(t)=[(pλ1)k1+(pλ2)k2++(pλn)kn]δ(t)=k1eλ1tε(t)+k2eλ2tε(t)++kneλntε(t)
根据上式,求出 h ( t ) h(t) h(t)的最终解:
h ( t ) = e − t u ( t ) h(t) = e^{-t}u(t) h(t)=etu(t)
接着利用卷积求解原输入信号的零状态响应 r z s r_{zs} rzs
r z s = e ( t ) ∗ h ( t ) = [ ( 1 + e − 3 t ) u ( t ) ] ∗ e − t u ( t ) = ( 1 − 1 2 e − t − 1 2 e − 3 t ) u ( t ) \begin{aligned} r_{zs} &= e(t)*h(t) \\&=[(1+e^{-3t})u(t)]*e^{-t}u(t) \\&=(1-\frac{1}{2}e^{-t}-\frac{1}{2}e^{-3t})u(t) \end{aligned} rzs=e(t)h(t)=[(1+e3t)u(t)]etu(t)=(121et21e3t)u(t)
将零输入响应和零状态响应相加即可得到系统的全响应:
r ( t ) = u c ( t ) = e − t u ( t ) + ( 1 − 1 2 e − t − 1 2 e − 3 t ) u ( t ) r(t)=u_c(t)=e^{-t}u(t) +(1-\frac{1}{2}e^{-t}-\frac{1}{2}e^{-3t})u(t) r(t)=uc(t)=etu(t)+(121et21e3t)u(t)

2. 求解系统全响应方法总结

观察上述求解过程,求解系统的全响应时可以遵循以下步骤:

  1. 列出系统的微分方程,并将微分方程使用算子进行表示。

  2. 求解系统的零输入响应

    • 根据微分方程获得传输函数 H ( p ) = N ( p ) D ( p ) H(p)=\frac{N(p)}{D(p)} H(p)=D(p)N(p),则系统的特征方程为 D ( p ) = 0 D(p)=0 D(p)=0

    • 求解特征方程 D ( p ) = 0 D(p)=0 D(p)=0,并得到特征根

    • 根据特征根的形式写出系统零输入响应的形式通解。部分通解形式见下表或连续时间系统时域分析1

    • 通过初始条件确定形式通解中的系数,即求得完整的零输入相应

  3. 求解系统的零状态响应(以冲激信号作为表达原信号的子信号)

    • 根据系统的特征方程 D ( p ) = 0 D(p)=0 D(p)=0确定特征根有无重根,并根据 H ( p ) H(p) H(p)分子分母的阶数关系,求出冲激信号 δ ( t ) \delta(t) δ(t)的响应 h ( t ) = H ( p ) δ ( t ) h(t)=H(p)\delta(t) h(t)=H(p)δ(t),如下表或连续时间系统时域分析2中所示

    • 利用卷积求解最终信号的零状态响应 r z = e ( t ) ∗ h ( t ) r_{z} = e(t)*h(t) rz=e(t)h(t) e ( t ) e(t) e(t)为系统的激励信号。

  4. 求解系统的全响应 r ( t ) = r z i ( t ) + r z s ( t ) ∗ r(t) = r_{zi}(t) + r_{zs}(t)* r(t)=rzi(t)+rzs(t)

3. 常见激励信号的全响应

  1. 系统对指数激励信号 e ( t ) = e s t u ( t ) e(t) = e^{st}u(t) e(t)=estu(t)的全响应

r ( t ) = r z i ( t ) + r z s ( t ) = ∑ i = 1 n c i e λ i t ε ( t ) + ∑ i = 1 n k i ( e λ i t ∗ e s t ) r(t)=r_{z i}(t)+r_{z s}(t)=\sum_{i=1}^{n} c_{i} e^{\lambda_{i} t} \varepsilon(t)+\sum_{i=1}^{n} k_{i}\left(e^{\lambda_{i} t} * e^{s t}\right) r(t)=rzi(t)+rzs(t)=i=1ncieλitε(t)+i=1nki(eλitest)

​其中 λ i \lambda_i λi是系统特征方程的特征根, c i c_i ci是求解过程中的待定系数, k i k_i ki是系统传输函数分部分解后的各部分的系数

  1. 矩形脉冲激励 e ( t ) = u ( t ) − u ( t − t 0 ) e(t)=u(t)-u(t-t_0) e(t)=u(t)u(tt0)的全响应

r ( t ) = ∑ i = 1 n c i e λ i t + ∑ i = 1 n ( − k i λ i ) [ ( 1 − e λ i t ) ( u ( t ) − ε ( t − t 0 ) ) + ( 1 − e λ i t 0 ) e λ i ( t − t 0 ) u ( t − t 0 ) ] \begin{aligned} r(t)=\sum_{i=1}^{n} c_{i} e^{\lambda_{i} t}+\sum_{i=1}^{n}\left(-\frac{k_{i}}{\lambda_{i}}\right)\left[\left(1-e^{\lambda_{i} t}\right)\left(u(t)-\varepsilon\left(t-t_{0}\right)\right)\right.\\ \left. +\left(1-e^{\lambda_{i} t_{0}}\right) e^{\lambda_{i}\left(t-t_{0}\right)} u\left(t-t_{0}\right)\right] \end{aligned} r(t)=i=1ncieλit+i=1n(λiki)[(1eλit)(u(t)ε(tt0))+(1eλit0)eλi(tt0)u(tt0)]

​其中 λ i \lambda_i λi是系统特征方程的特征根, c i c_i ci是求解过程中的待定系数, k i k_i ki是系统传输函数分部分解后的各部分的系数

4. 总结

连续时间线性系统的时域分析主要是求解系统的零输入响应和领状态响应。求解零输入响应,由于不需考虑系统的激信号,并且求解相对容易,可以使用数学求解齐次线性常系数微分方程的方法求解。而零状态响应由于和激励信号紧密相连,因此引入了卷积的方法求解。

卷积之所以能够求解任意信号的零状态响应,是借助于线性时不变系统的齐次性、叠加性以及时不变性,将输入信号分解为子信号,通过叠加子信号响应,进而求解原信号的响应。其中子信号一般使用冲激函数 δ ( t ) \delta(t) δ(t),冲激函数的响应是冲激响应,记为 h ( t ) h(t) h(t),将冲激响应进行叠加的方法是卷积 e ( t ) ∗ h ( t ) e(t)*h(t) e(t)h(t)

至此,连续时间系统的时域分析全部完成,后续会补充一些习题,用以加深理解运算过程、物理意义以及相关的基础概念。

求解零状态响应的方法有很多,如系统方程法,系数平衡法,初始条件法等,但是这些都不重要,只需理解其中一种即可。之后学习拉普拉斯变换时,将用更简便的方法求解系统的零状态响应。

感谢阅读,若有不当之处欢迎留言批评指正

  • 4
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值