某人构造出一个指数滤波器。
模拟滤波器都有阶数
N
N
N。若没有高斯函数中的2,则不同的
N
N
N都过同一点。我想是这个原因某人就构造出一个指数低通滤波器,以及相应的高通滤波器。
这个指数滤波器离谱了。
低通滤波器阶数为2时不是高斯函数。
高斯函数指数的分母有个2。这么大的一个2看不见吗?有2和没2能一样吗? 低通滤波器阶数为2时不是高斯函数,所以叫它高斯低通滤波器这合适吗?
截止频率。
不是想把截止频率搁在哪就随心所欲搁在哪的,不要想当然。截止频率有定义。
巴特沃斯模拟低通滤波器在截止频率处幅值从最大值下降到它的 0.707,低通滤波器和高通滤波器在截止频率处的增益都处于
−
3
-3
−3db。
冈萨雷斯写的高斯低通滤波器,分母有个2,这样截止频率处0.607,比不上巴特沃斯的0.707,但是超过0.5了。即使这样频域滤波器也不会用高斯函数。
但是如果没有这个
2
2
2,截止频率处下降到多少呢?
所以这样的指数滤波器有何用?分布就是分布,原来一个
2
2
2还很有用。图中
D
0
=
0.3
D_0=0.3
D0=0.3。
单位增益 1 1 1减去指数函数不是指数函数。
不是指数函数为什么可以称为指数高通高通滤波器?即使高斯函数也一样。
我的代课老师,也是我的硕士生导师,当年就是按照他的教材这样讲的,离谱的内容我认定了22年。现在勘误最难的地方就是这里,删除这两节内容我应该补什么,还得补相同篇幅的内容。但是无论如何难,也不能让如此离谱的内容再传播了。