带你玩转Jetson Xavier NX系列教程 | Xavier NX 环境变量配置,风扇控制以及Jtop安装

本文介绍了Jetson Xavier NX在刷机后的环境配置,包括风扇控制、CUDA环境变量设置和Jtop资源监视工具的安装。风扇控制可通过调整PWM占空比实现,CUDA环境变量配置则需要编辑系统文件并刷新。此外,Jtop能帮助监视系统资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在最前:转载请注明文章出处。本期文章分为三部分内容,均为刷机以后需要配置的小细节,建议大家刷机以后立刻进行配置,没有配置的后续再配置也没什么大问题。

Session_1 : : Xavier NX风扇的控制

很多开发者拿到Xavier NX时候开机,发现Xavier NX的风扇并不会自动转动,很多人都去群里或者找经销商询问是否自己的开发板坏掉了。实际上不是这样的。Xavier NX的风扇在系统内核中有一套自动控制温度和转速的算法,经过我观察大约在40度左右的时候会自动开启风扇进行散热,在核心温度大约低于39度时候会自动关闭散热风扇。Xavier NX的官方开发套件载板是和Nano通用的,因此PWM控制的指令和管脚和Nano也是通用的,完全可以通过nano的PWM指令来控制Xavier的风扇。指令通过Alt+Ctrl+T呼叫命令台,然后在命令行输入以下代码并且运行:

sudo sh -c 'echo 140 > /sys/devices/pwm-fan/target_pwm'

这段代码中,数字位数140即代表了风扇的PWM占空比参数。其区间为0~255,0即代表了风扇完全停止,255代表了风扇火力全开。实际上在日常使用过程中我倾向于使用100~150的占空比,也就是40%~60%左右。因为过低风扇散热无力,过高了风扇噪音快赶上台式机了,听起来会比较烦

### 在 Jetson Xavier NX 上部署 YOLOv8 的教程 #### 1. 刷机并配置 TF 卡作为系统盘 由于 Jetson Xavier NX 的 eMMC 存储空间有限,通常建议使用 TF 卡作为系统盘来扩展存储容量。具体操作如下: - 安装支持的 TF 卡驱动程序[^3]。 - 将 JetPack 提供的 Linux 系统镜像写入 TF 卡中。 - 修改 BIOS 设置,使设备从 TF 卡启动。 #### 2. jtop 工具安装与电源管理优化 为了实时监控硬件状态以及防止屏幕休眠影响开发体验,需完成以下步骤: - 使用 `pip` 或源码方式安装 `jtop` 工具[^1]。 - 调整 Jetson 设备的电源策略以禁用自动息屏功能。 #### 3. CUDA 和 cuDNN 的安装 YOLOv8 对 GPU 加速的支持依赖于 NVIDIA 的 CUDA 和 cuDNN 库。按照官方推荐版本执行以下命令: - 安装 CUDA 10.2 及对应版本的 cuDNN 8.0。 ```bash sudo apt-get install cuda-libraries-10-2 libcudnn8=8.* ``` #### 4. PyTorch 环境搭建 PyTorch 是 YOLOv8 所基于的主要深度学习框架之一,在 Jetson 平台上需要特别注意兼容性问题: - 下载适合 ARM 架构的预编译 whl 文件(如 torch-1.8.0-cp36-cp36m-linux_aarch64.whl)。 - 安装必要的 Python 依赖库及其科学计算组件。 ```bash pip install numpy scipy pillow matplotlib opencv-python-headless pip install ./torch-1.8.0-cp36-cp36m-linux_aarch64.whl ``` #### 5. TensorRT 配置与模型转换 TensorRT 是一种高效的推理引擎,用于提升模型性能。以下是实现过程中的关键点: - 解决可能发生的 RuntimeError 错误,通过调整输入张量维度一致性得以修复[^2]。 - 运行脚本将 ONNX 格式的 YOLOv8 模型转化为 TensorRT 支持的形式。 ```python import tensorrt as trt TRT_LOGGER = trt.Logger(trt.Logger.WARNING) def build_engine(onnx_file_path, engine_file_path): with trt.Builder(TRT_LOGGER) as builder, \ builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) as network,\ trt.OnnxParser(network, TRT_LOGGER) as parser: ... ``` #### 6. 测试与验证 最终阶段是对整个流程进行测试,确认模型能够在目标平台上成功加载并运行推理任务。确保数据集路径正确无误,并观察输出结果是否符合预期。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王向阳

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值