热管理之散热风扇结构设计,必看(避坑:降噪)

文章探讨了散热风扇在进风口和出风口不同位置产生的啸叫现象,分析了风道不通、风速过高等因素,重点指出安装间距对解决啸叫的关键作用。作者强调在结构设计中要考虑风阻、振动等问题,揭示了散热风扇中的小知识大道理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 谈谈散热风扇的噪音、风道、转速三者关联性_阴阳万物的博客-CSDN博客

散热风扇的风道和噪音_阴阳万物的博客-CSDN博客

继上两温之后,近日散热上再次出现一个有趣的现象。

现象描述:进风口散热风扇和出风口风扇,使用相同风扇,电路为并联12V供电,但出现在结构上安装散热风扇工作后,进风口存在啸叫,出风口为出现啸叫。

啸叫现象非常常见,生活中就有。比如:家里关窗户的时候,预留一道缝隙后,室外刮大风时,就会出现“呜呜”啸叫。

分析啸叫存在的原因:风道不通、风速过高、安装抖动、间距过近、存在风阻、扇叶不平衡等等

问题:在同等且相同条件下,为什么进风口出现啸叫,而出风口为出现。

经过多次验证分析后,出现现在问题是因为风扇安装架和风扇位置过于靠近,只需要在增加当前设计的间距。多次验证后,安装结构上,增加5mm-7mm后,啸叫未出现。

以上仅仅是小物在工作中的小小收获。正面(进风口)抗击需要保持一点距离,也要注意安全(容易切手指甲);背面(出风口)抗击需要顺畅,不能堵塞,容易增加噪声,转速提高,阻值变大,电机发热;

在结构设计中,设计同类需要安装散热风扇的,进出风口应该考虑,风扇工作后是否存在风阻,安装固定是否会振动,造成啸叫。

在小小的异常里,挖呀挖呀挖,小小的散热风扇发现大大的学问(瓜)

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样性。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确性和稳定性 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阴阳万物

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值