数字电路基础知识——CMOS门电路 (与非门、或非、非门、OD门、传输门、三态门)

数字电路基础知识——CMOS门电路 (非门、或非门、与非门、或门、与门、与或非门、异或门、OD门、传输门、三态门)
先了解二极管门电路逻辑,再次介绍CMOS门电路,也是IC中用的最广泛的门电路。
主要了解与非门、或非门以及相同面积的cmos与非门或非门哪个更快。OD门、传输门、三态门。

一、二极管门电路

CMOS门电路介绍之前,先介绍二极管门电路:

1. 与门

只要有一个为低电平,Y端就被拉低到0.7V
在这里插入图片描述

2. 或门

只要有一个为高电平,Y端就被拉高到2.3V
在这里插入图片描述

3. 二极管门电路的缺点

输出的高低电平数值和输入的高低电平不相等,相差一个导通电压,如果输出作为下一级门输入信号,将发生高、低电平偏移
输出端对地接上负载电阻,组在电阻的改变会影响输出高电平。因此,这种电路只用作IC内部的逻辑单元,并不能作为输出端直接驱动负载

二、CMOS 门电路
1. 反相器(非门)

反向器的介绍可以参考
数字电路基础知识——反相器的相关知识(噪声容限、VTC、转换时间、速度的影响因素、传播延时等)

2. 常用的逻辑门:或非门、与非门

除了反相器,比较常用的有 或非门、与非门、或门、与门、与或非门、异或门等。
逻辑表达式分别为:
Y=(AB)’
T=(A+B)'

在这里插入图片描述
下面主要了解下与非门其缺点、和改进的电路.

主要缺点
1)输出电阻R0受输入状态影响,即输出电阻不一样,能够相差四倍。如:
A=1, B=1,则R0 = Ron2 + Ron4 = 2Ron
A=0, B=0,则R0 = Ron2 // Ron4 = 1/2Ron
A=0, B=1,则R0 = Ron1 = Ron
A=0, B=0,则R0 = Ron3 = Ron

2)输出的高低电平受输入端数目的影响
输入端越多,,串联的驱动管数目也越多,输出的VOL越高,VOH也更高。
当输入端全部为低电平时,输入端越多负载并联的数目越多,输出的高电平VOH也越高。

3)使T2、T4的Vgs达到开启电压时,对应的Vi也会不同

相同面积的cmos与非门和或非门哪个更快——与非门会更优

学过半导体器件都知道,电子迁移率是空穴的2.5倍(在硅基CMOS工艺中),运算就是用这些大大小小的MOS管驱动后一级的负载电容,翻转速度和负载大小一级前级驱动能力相关。为了上升延迟和下降延迟相同,PMOS需要做成NMOS两倍多大小

载流子的迁移率,对PMOS而言,载流子是空穴;对NMOS而言,载流子是电子。

PMOS采用空穴导电,NMOS采用电子导电,由于PMOS的载流子的迁移率比NMOS的迁移率小,所以,同样尺寸条件下,PMOS的充电时间要大于NMOS的充电时间长

在互补CMOS电路中,与非门是PMOS管并联,NMOS管串联,而或非门正好相反,所以,同样尺寸条件下,与非门的速度快,所以,在互补CMOS电路中,优先选择与非门。

针对上面问题进行改进
在这里插入图片描述
采用或非门加反相器(缓冲器 就是与非门,如上图所示。
带缓冲的门电路,输出电阻、输出的高低电平以及电压传输特性将不受输入端状态的影响

对于或非门,则是与非门加缓冲器。

3. OD门(漏极开路的门电路)

OD门:为了满足输出电平的转换,吸收大负载电流以及线与逻辑,将MOS改为漏极开路

OD输出的与非门结构图如下:
OD门工作必须接上拉电阻RL到电源上。
在这里插入图片描述

OD门的应用:可以将多个OD门输出端直接相连,实现线与逻辑,即将输出并联使用,可以实现线与或用作电平转换和驱动。如下图所示:
Y1、Y2中任何一个为低电平,输出都为低电平,同时为高时,输出才为高电平。
在这里插入图片描述

4. 传输门

CMOS传输门:利用P沟道MOS管和N沟道MOS管互补的特性连接如下图

T1是N沟道增强型MOS管,T2是P沟道增强型MOS管。T1和T2的源极和漏极分别相连作为传输门的输入端和输出端。C和C’是互补的控制信号。
在这里插入图片描述
由于CMOS传输门的结构是对称的,所以,输出端和输入端可以互换,是一个双向器件。
CMOS传输门的应用:
1)传输门和反相器构成异或门电路
在这里插入图片描述
A=1,B=0,TG1截止,TG2导通,Y=B’=1
A=0,B=1,TG1导通,TG2截止,Y=B=1
A=0,B=0,TG1导通,TG2截止,Y=B=0
A=1,B=1,TG1截止,TG2导通,Y=B‘=0

2)模拟开关:
由传输门和一个反相器组成,双向器件。
在这里插入图片描述
传输连续变化的模拟电压信号。

5. 三态门

1)高阻态:
三态门除了高低电平,还有第三个状态——高阻态。
高阻态:电路的一种输出状态,既不是高电平也不是低电平,如果高阻态再输入下一级电路的话,对下级电路无任何影响,可以理解为断路,不被任何东西所驱动,也不驱动任何东西。

三态门常用在IC的输出端,也称为输出缓冲器

2)下图是CMOS三态输出反相器的结构:
在这里插入图片描述
当EN’=0时,Y=A’:
A=1,G4、G5的输出为高电平,T1截止、T2导通,Y=0;
A=0,G4、G5的输出为低电平,T1导通、T2截止,Y=1;
当EN’=1时,不管A为高低状态,G4输出高电平,G5输出低电平,T1和T2同时截止,输出呈现高阻态。

3)三态门的应用:
减少各单元之间的连线数目:
在这里插入图片描述
数据的双向传输:
在这里插入图片描述
4)还有几种常见的三门结构:
在这里插入图片描述
图一:
三态非门,当~ EN为1时,最上面的PMOS和最下面的NMOS管截止,无论A取什么状态,输出为高阻态,反之输出为 Y= ~ A

图二:
利用一个与非门,得到三态缓冲门,当~EN为高电平时,最上面的PMOS管截止,输出为高阻态,反之,输出为 Y=A

图三:
三态非门,在反相器后面加一个传输门,当~EN为低电平,传输门导通,输出 Y = ~A,反之传输门截止,输出高阻态。如果想要EN高电平有效,交换传输门上下端子的反相器即可。

图四:
利用一个与非门,得到三态缓冲门,当~EN为高电平时,最上面的PMOS管截止,输出为高阻态,反之,输出为 Y=A

<think>好的,用户想了解与非门的逻辑表达式和实现方法。首先,我需要回忆一下基本的逻辑知识。与非门是基本的逻辑之一,属于组合逻辑电路。 首先,与非门的逻辑表达式是什么?我记得,与非门是由与非门组合而成的。与的表达式是A AND B,也就是$A \cdot B$。然后再加上非门,所以与非门的表达式应该是这个结果的非,即$\overline{A \cdot B}$,也就是A和B先进行与运算,再取反。 接下来是它的真值表。对于两个输入的情况,当输入都是1时,输出是0;其他情况下输出都是1。比如输入A=0,B=0,输出是1;A=0,B=1,输出1;A=1,B=0,输出1;A=1,B=1,输出0。这个真值表需要正确无误地呈现出来。 然后是实现方法。用户可能想知道如何用其他逻辑来构造与非门,或者实际电路中如何搭建。我记得可以用二极管和晶体管来实现,比如TTL电路中的与非门结构。不过用户可能更关注逻辑层面的实现,比如用与非门组合。但通常,与非门本身就是一个基本,可能不需要分解,但也可以说明如何用其他组合而成,比如与后接非门。 另外,用户提到的参考引用里提到了74LS00是二输入端四与非门,所以可能实际应用中的集成电路例子可以举这个。同时,引用[2]中提到了实验中使用74LS00,这说明实际电路中确实用到了这样的芯片来实现与非门功能。 还要注意用户的问题是否涉及与非门的应用,比如在组合逻辑电路中的使用,比如半加器、全加器等。但用户的问题主要集中在表达式和实现方法,所以可能需要简要提及其应用,但主要回答还是集中在表达式和电路实现上。 需要确保逻辑表达式的LaTeX格式正确,使用$$...$$或者$...$。根据系统指令,行内公式用$...$,独立公式用$$...$$。比如与非门的表达式应该用行内的$...$,而真值表可能需要用表格形式,但不需要公式。 最后,生成相关问题,需要围绕与非门展开,比如其他逻辑、实现电路、应用场景等。 总结回答的结构: 1. 逻辑表达式:$\overline{A \cdot B}$ 2. 真值表:表格形式 3. 实现方法:晶体管电路或组合其他门电路 4. 示例集成电路:74LS00 5. 应用场景举例 检查是否有遗漏,比如CMOS实现与非门的具体结构,或者更详细的电路图说明。不过用户的问题可能不需要太深入的电路细节,除非特别要求。保持回答简洁但完整。</think>### 与非门的逻辑表达式与实现方法 #### 1. 逻辑表达式 **与非门(NAND Gate)** 的逻辑表达式由 **与运算(AND)** 和 **非运算(NOT)** 组合而成。其表达式为: $$Y = \overline{A \cdot B}$$ 其中,$A$ 和 $B$ 是输入变量,$\cdot$ 表示与运算,$\overline{\quad}$ 表示非运算。 #### 2. 真值表 | 输入A | 输入B | 输出Y | |-------|-------|-------| | 0 | 0 | 1 | | 0 | 1 | 1 | | 1 | 0 | 1 | | 1 | 1 | 0 | 当且仅当输入全为1时,输出为0;其余情况输出均为1[^1]。 #### 3. 实现方法 **物理电路实现** - **晶体管级实现**: 与非门可通过 **CMOS电路** 实现。例如,使用两个并联的PMOS晶体管(上拉网络)和两个串联的NMOS晶体管(下拉网络)。输入信号控制晶体管的导通与截止,最终输出信号取反。 $$Y = \overline{A \cdot B}$$ - **集成芯片**: 实际工程中常直接使用集成逻辑芯片,如 **74LS00**(二输入端四与非门)[^2]。 **逻辑组合实现** 与非门也可通过 **与 + 非门** 组合实现: 1. 先通过与计算 $A \cdot B$; 2. 再将结果输入非门取反。 #### 4. 应用场景 - 基础逻辑电路设计(如加法器、编码器); - 存储电路的读写控制; - 通用逻辑功能实现(因与非门是 **功能完备** 的逻辑,可单独构成任意逻辑电路)。 --- ### 相关问题
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

摆渡沧桑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值